In the present work, a novel parabolic trough receiver design has been proposed. The proposed design is similar to the conventional receiver design except for the envelope and the annulus part. Here, a certain portion of the conventional glass envelope is coated with Sn-In2O3 and also Sn-In2O3 coated glass baffles are provided in the annulus part to reduce the radiative losses. The optical properties of the coated glass are such that it allows most of the solar irradiance to pass through, but reflects the emitted long wavelength radiations back to the absorber tube. Sn-In2O3 coated glass is referred to as “transparent heat mirror.” Thus, effectively reducing the heat loss area and improving the thermal efficiency of the solar collector. A detailed one-dimensional steady-state heat transfer model has been developed to predict the performance of the proposed receiver design. It was observed that while maintaining the same external conditions (such as ambient/initial temperatures, wind speed, solar insolation, flow rate, and concentration ratio), the heat mirror-based parabolic trough receiver design has about 3–5% higher thermal efficiency as compared to the conventional receiver design. Furthermore, the heat transfer analysis reveals that depending on the spatial incident solar flux distribution, there is an optimum circumferential angle (θ = θoptimum, where θ is the heat mirror circumferential angle) up to which the glass envelope should be coated with Sn-In2O3. For angles higher than the optimum angle, the collector efficiency tends to decrease owing to increase in optical losses.

References

References
1.
Hafeza
,
A. Z.
,
Attia
,
A. M.
,
Eltwab
,
H. S.
,
ElKousy
,
A. O.
,
Afifi
,
A. A.
,
AbdElhamid
,
A. G.
,
AbdElqader
,
A. N.
,
Fateen
,
S.-E. K.
,
El-Metwallya
,
K. A.
,
Solimana
,
A.
, and
Ismail
,
I. M.
,
2018
, “
Design Analysis of Solar Parabolic Trough Thermal Collectors
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
1215
1260
.
2.
Kumaresan
,
G.
,
Sudhakar
,
P.
,
Santosh
,
R.
, and
Velraj
,
R.
,
2017
, “
Experimental and Numerical Studies of Thermal Performance Enhancement in the Receiver Part of Solar Parabolic Trough Collectors
,”
Renewable Sustainable Energy Rev.
,
77
, pp.
1363
1374
.
3.
Price
,
H.
,
Lüpfert
,
E.
,
Kearney
,
D.
,
Zarza
,
E.
,
Cohen
,
G.
,
Gee
,
R.
, and
Mahoney
,
R.
,
2002
, “
Advances in Parabolic Trough Solar Power Technology
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
109
125
.
4.
May Tzuc
,
O.
,
Bassam
,
A.
,
Escalante Soberanis
,
M. A.
,
Venegas-Reyes
,
E.
,
Jaramillo
,
O. A.
,
Ricalde
,
L. J.
,
Ordonez
,
E. E.
, and
El Hamzaoui
,
Y.
,
2017
, “
Modeling and Optimization of a Solar Parabolic Trough Concentrator System Using Inverse Artificial Neural Network
,”
J. Renewable Sustainable Energy
,
9
(
1
), p.
013701
.
5.
Liu
,
Z.
,
Hao
,
L.
,
Liu
,
K.
,
Yu
,
H.
, and
Cheng
,
K.
,
2017
, “
Design of High-Performance Water-in-Glass Evacuated Tube Solar Water by a High-Throughput Screening Based on Machine Learning: A Combined Modeling and Experimental Study
,”
Sol. Energy
,
142
, pp.
61
67
.
6.
Hao
,
L.
,
Liu
,
Z.
,
Liu
,
K.
, and
Zhang
,
Z.
,
2017
, “
Predictive Power of Machine Learning for Optimizing Solar Water Heater Performance: The Potential Application of High-Throughput Screening
,”
Int. J. Photoenergy
,
2017
, pp.
1
10
.
7.
Khullar
,
V.
,
Bhalla
,
V.
, and
Tyagi
,
H.
,
2017
, “
Potential Heat Transfer Fluids (Nanofluids) for Direct Volumetric Absorption-Based Solar Thermal Systems
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
1
), p.
011009
.
8.
Khullar
,
V.
,
Tyagi
,
H.
,
Patrick
,
P. E.
,
Otanicar
,
T. P.
,
Singh
,
H.
, and
Taylor
,
R. A.
,
2013
, “
Solar Energy Harvesting Using Nanofluids-Based Concentrating Solar Collector
,”
ASME J. Nanotechnol. Eng. Med.
,
3
(
3
), p.
031003
.
9.
Yang
,
H.
,
Wang
,
Q.
,
Huang
,
X.
,
Li
,
J.
, and
Pei
,
G.
,
2018
, “
Performance Study and Comparative Analysis of Traditional and Double-Selective Coated Parabolic Trough Receivers
,”
Energy
,
145
, pp.
206
216
.
10.
Wang
,
Q.
,
Li
,
J.
,
Yang
,
H.
,
Su
,
K.
, and
Pei
,
G.
,
2017
, “
Performance Analysis on a High-Temperature Solar Evacuated Receiver With an Inner Radiation Shield
,”
Energy
,
139
, pp.
447
458
.
11.
Fuqiang
,
W.
,
Jianyu
,
T.
,
Lanxin
,
M.
, and
Chengchao
,
W.
,
2015
, “
Effects of Glass Cover on Heat Flux Distribution for Tube Receiver With Parabolic Trough Collector System
,”
Energy Convers. Manage.
,
90
, pp.
47
52
.
12.
Daniel
,
P.
,
Joshi
,
Y.
, and
Das
,
A. K.
,
2011
, “
Numerical Investigation of Parabolic Trough Receiver Performance With Outer Vacuum Shell
,”
Sol. Energy
,
85
(
9
), pp.
1910
1914
.
13.
Al-Ansary
,
H.
, and
Zeitoun
,
O.
,
2011
, “
Numerical Study of Conduction and Convection Heat Losses From a Half-Insulated Air-Filled Annulus of the Receiver of a Parabolic Trough Collector
,”
Sol. Energy
,
85
(
11
), pp.
3036
3045
.
14.
Jeter
,
S. M.
,
1987
, “
Analytical Determination of the Optical Performance of Practical Parabolic Trough Collectors From Design Data
,”
Sol. Energy
,
39
(
1
), pp.
11
21
.
15.
Jeter
,
S. M.
,
1986
, “
Calculation of the Concentrated Flux Density Distribution in Parabolic Trough Collectors by a Semifinite Formulation
,”
Sol. Energy
,
37
(
5
), pp.
335
345
.
16.
Galindo
,
J.
, and
Bilgen
,
E.
,
1984
, “
Flux and Temperature Distribution in the Receiver of Parabolic Solar Furnaces
,”
Sol. Energy
,
33
(
2
), pp.
125
135
.
17.
Sadaghiyani
,
O. K.
,
Pesteei
,
S. M.
, and
Mirzaee
,
I.
,
2014
, “
Numerical Study on Heat Transfer Enhancement and Friction Factor of LS-2 Parabolic Solar Collector
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
1
), p.
012001
.
18.
Dudley
,
V. E.
,
Kolb
,
G. J.
,
Sloan
,
M.
, and
Kearney
,
D.
,
1994
, “
Test Results, SEGS LS-2 Solar Collector
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND94-1884.
19.
Timothy
,
M. A.
, and
Brosseau
,
D. A.
,
2005
, “
Final Test Results for the Schott HCE on a LS-2 Collector
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND2005-4034.
20.
Forristall
,
R.
,
2003
, “
Heat Transfer Analysis and Modelling of a Parabolic Trough Solar Receiver Implemented in Engineering Equation Solver
,” National Renewable Energy Technology, Golden, CO, Report No.
NREL/TP 550-34169
.http://fac.ksu.edu.sa/sites/default/files/34169.pdf
21.
Fan
,
J. C.
, and
Bachner
,
F. J.
,
1975
, “
Properties of Sn-Doped In2O3 Films Prepared by RF Sputtering
,”
J. Electrochem. Soc.
,
122
(
12
), pp.
1719
1725
.
22.
Yoshida
,
S.
,
1978
, “
Efficiency of Drude Mirror-Type Selective Transparent Filters for Solar Thermal Conversion
,”
Appl. Opt.
,
17
(
1
), pp.
145
149
.
23.
Brewster
,
M. Q.
,
1992
,
Thermal Radiative Transfer and Properties
,
Wiley
, New York.
24.
Fan
,
J. C. C.
,
Bachner
,
F. J.
,
Foley
,
G. H.
, and
Zavracky
,
P. M.
,
1974
, “
Transparent Heat Mirror Films of TiO2/Ag/TiO2 for Solar Energy Collection and Radiation Insulation
,”
Appl. Phys. Lett.
,
25
(
12
), p.
693
.
25.
Fan
,
J. C.
, and
Bachner
,
F. J.
,
1976
, “
Transparent Heat Mirrors for Solar-Energy Applications
,”
Appl. Opt.
,
15
(
4
), pp.
1012
1017
.
26.
Khullar
,
V.
,
2014
, “
Heat Transfer Analysis and Optical Characterization of Nanoparticle Dispersion Based Solar Thermal Systems
,” Ph.D. thesis, Indian Institute of Technology Ropar, Rupnagar, Punjab, India.
27.
Duffie
,
J. A.
, and
Beckman
,
W. A.
,
2006
,
Solar Engineering of Thermal Processes
,
Wiley
, Hoboken, NJ.
28.
He
,
Y. L.
,
Xiao
,
J.
,
Cheng
,
Z. D.
, and
Tao
,
Y. B.
,
2011
, “
A MCRT and FVM Coupled Simulation Method for Energy Conversion Process in Parabolic Trough Solar Collector
,”
Renewable Energy
,
36
(
3
), pp.
976
985
.
29.
Liang
,
H.
,
You
,
S.
, and
Zhang
,
H.
,
2015
, “
Comparison of Different Heat Transfer Models for Parabolic Trough Solar Collectors
,”
Appl. Energy
,
148
, pp.
105
114
.
30.
Yilmaz
,
I. H.
, and
Soylemez
,
M. S.
,
2014
, “
Thermo-Mathematical Modelling of Parabolic Trough Collector
,”
Energy Convers. Manage.
,
88
, pp.
768
784
.
31.
Patil
,
R. G.
,
Panse
,
S. V.
, and
Joshi
,
J. B.
,
2014
, “
Optimization of Non-Evacuated Receiver of Solar Collector Having Non-Uniform Temperature Distribution for Minimum Heat Loss
,”
Energy Convers. Manage.
,
85
, pp.
70
84
.
32.
Wu
,
Z.
,
Li
,
S.
,
Yuan
,
G.
,
Lei
,
D.
, and
Wang
,
Z.
,
2014
, “
Three-Dimensional Numerical Study of Heat Transfer Characteristics of Parabolic Trough Receiver
,”
Appl. Energy
,
113
, pp.
902
911
.
33.
Cheng
,
Y.
,
He
,
Y.
, and
Qiu
,
Y.
,
2015
, “
A Detailed Nonuniform Thermal Model of a Parabolic Trough Solar Receiver With Two Halves and Two Inactive Ends
,”
Renewable Energy
,
74
, pp.
139
147
.
34.
SCHOTT Solar CSP GmbH, 2008, “
SCHOTT PTR®70 Receiver
,” SCHOTT Solar, Mainz, Germany, accessed Jan. 15, 2018, http://www.schott.com/d/csp/370a8801-3271-4b2a-a3e6-c0b5c78b01ae/1.0/schott_ptr70_4th_generation_brocure.pdf
35.
Pracchia
,
J. A.
, and
Simon
,
J. M.
,
1981
, “
Transparent Heat Mirrors: Influence of the Materials on the Optical Characteristics
,”
Appl. Opt.
,
20
(
2
), pp.
251
258
.
You do not currently have access to this content.