This paper aims at providing further understanding on the fluid flow and heat transfer processes in unsteady rotating systems with mass transpiration. Such systems can be found in chemical separators, hydraulic systems, and printing devices. To this end, an unsteady viscous flow in the vicinity of an unaxisymmetric stagnation-point on a rotating cylinder is examined. The nonuniform transpiration and a transverse magnetic field are further considered. The angular speed of the cylinder and the thermal boundary conditions are expressed by time-dependent functions. A reduction of the Navier–Stokes and energy equations is obtained through using appropriate similarity transformations. The semisimilar solution of the Navier–Stokes equations and energy equation are developed numerically using an implicit finite difference scheme. Pertinent parameters including the Reynolds number and magnetic parameter and transpiration function are subsequently varied systematically. It is shown that the transpiration function can significantly affect the thermal and hydrodynamic behaviors of the system. In keeping with the findings in other areas of magnetohydrodynamics (MHD), the results show that the applied magnetic field has modest effects on the Nusselt number. However, it is demonstrated that the magnetic effects can significantly increase the imposed shear stress on the surface of the rotating cylinder.

References

References
1.
Wilson
,
I. D.
,
Adlard
,
E. R.
,
Cooke
,
M.
, and
Poole
,
C. F.
,
2000
,
Encyclopaedia of Separation Science
,
Academic
, Acedemic Press, London.
2.
He
,
J.
,
Huang
,
M.
,
Wang
,
D.
,
Zhang
,
Z.
, and
Li
,
G.
,
2014
, “
Magnetic Separation Techniques in Sample Preparation for Biological Analysis: A Review
,”
J. Pharma Biomed Anal. Ens.
,
101
(
2014
), pp.
84
101
.
3.
Friedman
,
G.
, and
Yellen
,
B.
,
2005
, “
Magnetic Separation, Manipulation and Assembly of Solid Phase in Fluids
,”
Curr. Opin. Colloid Interface Sci.
,
10
(
3–4
), pp.
158
166
.
4.
Fetterman
,
A. J.
, and
Fisch
,
N. J.
,
2011
, “
The Magnetic Centrifugal Mass Filter
,”
Phys. Plasmas
,
18
(
9
), p.
094503
.
5.
Zhou
,
Y.
,
Wu
,
W.
, and
Qiu
,
K.
,
2010
, “
Recovery of Materials From Waste Printed Circuit Boards by Vacuum Pyrolysis and Vacuum Centrifugal Separation
,”
Waste Manage.
,
30
(
11
), pp.
2299
2304
.
6.
Hiemenz
,
K.
,
1911
, “
Die Grenzschicht an Einem in Den Gleichförmingen Flüssigkeitsstrom Eingetauchten Geraden Kreiszylinder
,”
Dinglers Polytech. J.
,
326
, pp.
321
410
.
7.
Homann
,
F.
,
1936
, “
Der Einfluss Grosser Zähigkeit Bei Der Strömung Um Den Zylinder Und Um Die Kugel
,”
J. Appl. Math. Mech. Z. Angew Math. Mech.
,
16
(
3
), pp.
153
164
.
8.
Howarth
,
L.
,
1951
, “
CXLIV. The Boundary Layer in Three Dimensional Flow—Part II. The Flow Near a Stagnation Point
,”
London Edinburgh Dublin Phil. Mag.
,
42
(
335
), pp.
1433
1440
.
9.
Davey
,
A.
,
1961
, “
Boundary-Layer Flow at a Saddle Point of Attachment
,”
J. Fluid. Mech.
,
10
(
4
), pp.
593
610
.
10.
Wang
,
C. Y.
,
1974
, “
Axisymmetric Stagnation Flow on a Cylinder
,”
Q. Appl. Math.
,
32
(
2
), pp.
207
213
.
11.
Wang
,
C. Y.
,
1973
, “
Axisymmetric Stagnation Flow Towards a Moving Plate
,”
AIChE. J.
,
19
(
5
), pp.
1080
1081
.
12.
Reddy Gorla
,
R. S.
,
1976
, “
Heat Transfer in an Axisymmetric Stagnation Flow on a Cylinder
,”
App. Sci. Res.
,
32
(
5
), pp.
541
553
.
13.
Gorla
,
R. S. R.
,
1977
, “
Unsteady Laminar Axisymmetric Stagnation Flow Over a Circular Cylinder
,”
Mech. Develop.
,
9
, pp.
286
288
.
14.
Gorla
,
R. S. R.
,
1978
, “
Nonsimilar Axisymmetric Stagnation Flow on a Moving Cylinder
,”
Int. J. Eng. Sci.
,
16
(
6
), pp.
397
400
.
15.
Gorla
,
R. S. R.
,
1978
, “
Transient Response Behavior of an Axisymmetric Stagnation Flow on a Circular Cylinder Due to Time Dependent Free Stream Velocity
,”
Int. J. Eng. Sci.
,
16
(
7
), pp.
493
502
.
16.
Gorla
,
R. S. R.
,
1979
, “
Unsteady Viscous Flow in the Vicinity of an Axisymmetric Stagnation Point on a Circular Cylinder
,”
Int. J. Eng. Sci.
,
17
(
1
), pp.
87
93
.
17.
Cunning
,
G. M.
,
Davis
,
A. M. J.
, and
Weidman
,
P. D.
,
1998
, “
Radial Stagnation Flow on a Rotating Circular Cylinder With Uniform Transpiration
,”
J. Eng. Math.
,
33
(
2
), pp.
113
128
.
18.
Grosch
,
C. E.
, and
Salwen
,
H.
,
1982
, “
Oscillating Stagnation Point Flow
,”
Proc. R. Soc. London A: Math., Phys. Eng. Sci.
,
384
(
1786
), pp.
175
190
.
19.
Takhar
,
H. S.
,
Chamkha
,
A. J.
, and
Nath
,
G.
,
1999
, “
Unsteady Axisymmetric Stagnation-Point Flow of a Viscous Fluid on a Cylinder
,”
J. Eng. Sci.
,
37
(
15
), pp.
1943
1957
.
20.
Saleh
,
R.
, and
Rahimi
,
A. B.
,
2004
, “
Axisymmetric Stagnation-Point Flow and Heat Transfer of a Viscous Fluid on a Moving Cylinder With Time- Dependent Axial Velocity and Uniform Transpiration
,”
ASME J. Fluids Eng.
,
126
(
6
), pp.
997
1005
.
21.
Rahimi
,
A. B.
, and
Saleh
,
R.
,
2007
, “
Axisymmetric Stagnation—Point Flow and Heat Transfer of a Viscous Fluid on a Rotating Cylinder With Time-Dependent Angular Velocity and Uniform Transpiration
,”
ASME J. Fluids Eng.
,
129
(
1
), pp.
106
115
.
22.
Rahimi
,
A. B.
, and
Saleh
,
R.
,
2009
, “
Similarity Solution of Unaxisymmetric Heat Transfer in Stagnation-Point Flow on a Cylinder With Simultaneous Axial and Rotational Movements
,”
ASME J. Heat Transfer
,
130
(
5
), p.
054502
.
23.
Abbassi
,
A. S.
, and
Rahimi
,
A. B.
,
2009
, “
Nonaxisymmetric Three-Dimensional Stagnation-Point Flow and Heat Transfer on a Flat Plate
,”
ASME J. Fluids Eng.
,
131
(
7
), p.
074501
.
24.
Rahimi
,
A. B.
, and
Abbassi
,
A. S.
,
2009
, “
Three-Dimensional Stagnation Flow and Heat Transfer on a Flat Plate With Transpiration
,”
J. Thermophys. Heat Transfer
,
23
(
3
), pp.
513
521
.
25.
Abbassi
,
A. S.
,
Rahimi
,
A. B.
, and
Hamid Niazmand
,
H.
,
2012
, “
Exact Solution of Three-Dimensional Unsteady Stagnation Flow on a Heated Plate
,”
J. Thermophys. Heat Transfer
,
25
(
1
), pp.
55
58
.
26.
Abbassi
,
A. S.
, and
Rahimi
,
A. B.
,
2012
, “
Investigation of Two-Dimensional Unsteady Stagnation-Point Flow and Heat Transfer Impinging on an Accelerated Flat Plate
,”
ASME J. Heat Transfer
,
134
(
6
), pp.
135
145
.
27.
Subhashini
,
S. V.
, and
Nath
,
G.
,
1999
, “
Unsteady Compressible Flow in the Stagnation Region of Two-Dimensional and Axi-Symmetric Bodies
,”
Acta Mech.
,
134
(
3–4
), pp.
135
145
.
28.
Kumari
,
M.
, and
Nath
,
G.
,
1980
, “
Unsteady Compressible Three-Dimensional Boundary-Layer Flow Near an Asymmetric Stagnation Point With Mass Transfer
,”
Int. J. Eng. Sci.
,
18
(
11
), pp.
1285
1300
.
29.
Kumari
,
M.
, and
Nath
,
G.
,
1981
, “
Self-Similar Solution of Unsteady Compressible Three-Dimensional Stagnation-Point Boundary Layers
,”
Z. Angew. Math. Phys.
,
32
(
3
), pp.
267
276
.
30.
Katz
,
A.
,
1972
, “
Transformations of the Compressible Boundary Layer Equations
,”
SIAM J. Appl. Math.
,
22
(
4
), pp.
604
611
.
31.
Afzal
,
N.
, and
Ahmad
,
S.
,
1975
, “
Effects of Suction and Injection on Self-Similar Solutions of Second-Order Boundary-Layer Equations
,”
Int. J. Heat Mass Transfer
,
18
(
5
), pp.
607
614
.
32.
Libby
,
P. A.
,
1967
, “
Heat and Mass Transfer at a General Three-Dimensional Stagnation Point
,”
AIAA J.
,
5
(
3
), pp.
507
517
.
33.
Gersten
,
K.
,
Papenfuss
,
H. D.
, and
Gross
,
J. F.
,
1978
, “
Influence of the Prandtl Number on Second-Order Heat Transfer Due to Surface Curvature at a Three-Dimensional Stagnation Point
,”
Int. J. Heat Mass Transfer
,
21
(
3
), pp.
275
284
.
34.
Ishak
,
A.
,
Nazar
,
R.
, and
Pop
,
I.
,
2008
, “
Magnetohydrodynamic (MHD) Flow and Heat Transfer Due to a Stretching Cylinder
,”
Energy Convers. Manage.
,
49
(
11
), pp.
3265
3269
.
35.
Joneidi
,
A. A.
,
Domairry
,
G.
,
Babaelahi
,
M.
, and
Mozaffari
,
M.
,
2010
, “
Analytical Treatment on Magnetohydrodynamic (MHD) Flow and Heat Transfer Due to a Stretching Hollow Cylinder
,”
Int. J. Numer. Meth. Fluid
,
63
(
5
), pp.
548
563
.
36.
Butt
,
A. S.
, and
Ali
,
A.
,
2014
, “
Entropy Analysis of Magnetohydrodynamic Flow and Heat Transfer Due to a Stretching Cylinder
,”
J. Taiwan Inst. Chem. Eng.
,
45
(
3
), pp.
780
786
.
37.
Chauhan
,
D. S.
,
Agrawal
,
R.
, and
Rastogi
,
P.
,
2012
, “
Magnetohydrodynamic Slip Flow and Heat Transfer in a Porous Medium Over a Stretching Cylinder: Homotopy Analysis Method
,”
Numer. Heat Transfer. A-Appl.
,
62
(
2
), pp.
136
157
.
38.
Munawar
,
S.
,
Mehmood
,
A.
, and
Ali
,
A.
,
2012
, “
Time-Dependent Flow and Heat Transfer Over a Stretching Cylinder
,”
Chin. J. phys.
,
50
(
5
), pp.
828
848
.https://www.researchgate.net/publication/249313205_Time-dependent_flow_and_heat_transfer_over_a_stretching_cylinder
39.
Weidman
,
P. D.
, and
Mahalingam
,
S.
,
1997
, “
Axisymmetric Stagnation-Point Flow Impinging on a Transversely Oscillating Plate With Suction
,”
J. Eng. Math.
,
31
(
2–3
), pp.
305
318
.
40.
Alizadeh
,
R.
,
Rahimi
,
A. B.
, and
Najafi
,
M.
,
2016
, “
Unaxisymmetric Stagnation-Point Flow and Heat Transfer of a Viscous Fluid on a Moving Cylinder With Time-Dependent Axial Velocity
,”
J. Braz. Soc. Mech. Sci. Eng.
,
38
(
1
), pp.
85
98
.
41.
Alizadeh
,
R.
,
Rahimi
,
A. B.
,
Arjmandzadeh
,
R.
,
Najafi
,
M.
, and
Alizadeh
,
A.
,
2016
, “
Unaxisymmetric Stagnation-Point Flow and Heat Transfer of a Viscous Fluid With Variable Viscosity on a Cylinder in Constant Heat Flux
,”
Alexandria Eng. J.
,
55
(
2
), pp.
1271
1283
.
42.
Alizadeh
,
R.
,
Rahimi
,
A. B.
, and
Mohammad
,
N.
,
2016
, “
Magnetohydrodynamic Unaxisymmetric Stagnation-Point Flow and Heat Transfer of a Viscous Fluid on a Stationary Cylinder
,”
Alexandria Eng. J.
,
55
(
1
), pp.
37
49
.
43.
Blottner
,
F. G.
,
1970
, “
Finite Difference Methods of Solution of the Boundary Layer Equations
,”
AIAA. J.
,
8
(
2
), pp.
193
205
.
44.
Rohsenow
,
W. M.
,
Hartnett
,
J. P.
, and
Cho
,
Y. I.
,
1998
,
Handbook of Heat Transfer
,
McGraw-Hill
,
New York
.
45.
Alizadeh
,
R.
,
Rahimi
,
A. B.
, and
Najafi
,
M.
,
2016
, “
Non-Axisymmetric Stagnation-Point Flow and Heat Transfer of a Viscous Fluid on a Stationary Cylinder
,”
Scientia Iran., Trans. B, Mech. Eng.
,
23
(
5
), p.
2238
.
You do not currently have access to this content.