Vortex generators have been widely used to enhance heat transfer in various heat exchangers. Out of the two types of vortex generators, transverse vortex generators and longitudinal vortex generators (LVGs), LVGs have been found to show better heat transfer performance. Past studies have shown that the implementation of these LVGs can be used to improve heat transfer in thermoelectric generator systems. Here, a built in module in COMSOL Multiphysics® was used to study the influence of the location of LVGs in the channel on the comprehensive performance of an integrated thermoelectric device (TED). The physical model under consideration consists of a copper interconnector sandwiched between p-type and n-type semiconductors and a flow channel for hot fluid in the center of the interconnector. Four pairs of LVGs are mounted symmetrically on the top and bottom surfaces of the flow channel. Thus, using numerical methods, the thermo-electric-hydraulic performance of the integrated TED with a single module is examined. By fixing the material size D, the fluid inlet temperature Tin, and attack angle β, the effects of the location of LVGs and Reynolds number were investigated on the heat transfer performance, power output, pressure drop, and thermal conversion efficiency. The location of LVGs did not have significant effect on the performance of TEGs in the given model. However, the performance parameters show a considerable change with Reynold's number and best performance is obtained at Reynold number of Re = 500.

References

References
1.
Yang
,
J.
,
2005
, “
Potential Applications of Thermoelectric Waste Heat Recovery in the Automotive Industry
,”
24th International Conference on Thermoelectrics
(
ICT 2005
), Clemson, SC, June 19–23, pp.
170
174
.
2.
Espinosa
,
N.
,
Lazard
,
M.
,
Aixala
,
L.
, and
Scherrer
,
H.
,
2010
, “
Modeling a Thermoelectric Generator Applied to Diesel Automotive Heat Recovery
,”
J. Electron. Mater.
,
39
(
9
), pp.
1446
1455
.
3.
Saqr
,
K. M.
,
Mansour
,
M. K.
, and
Musa
,
M. N.
,
2008
, “
Thermal Design of Automobile Exhaust Based Thermoelectric Generators: Objectives and Challenges
,”
Int. J. Automot. Technol.
,
9
(
2
), pp.
155
160
.
4.
Zorbas
,
K. T.
,
Hatzikraniotis
,
E.
, and
Paraskevopoulos
,
K. M.
,
2007
, “
Power and Efficiency Calculation in Commercial TEG and Application in Wasted Heat Recovery in Automobile
,”
Fifth European Conference on Thermoelectrics
(
ECT
), Odessa, Ukraine, Sept. 10–12, pp. 1–4.https://pdfs.semanticscholar.org/21ec/ac8683e6d69886ed4363fb01aefb56145978.pdf
5.
Pandit
,
J.
,
Thompson
,
M.
,
Ekkad
,
S. V.
, and
Huxtable
,
S.
,
2013
, “
Experimental Investigation of Heat Transfer Across a Thermoelectric Generator for Waste Heat Recovery From Automobile Exhaust
,”
ASME
Paper No. HT2013-17438.
6.
Hsiao
,
Y. Y.
,
Chang
,
W. C.
, and
Chen
,
S. L.
,
2010
, “
A Mathematic Model of Thermoelectric Module With Applications on Waste Heat Recovery From Automobile Engine
,”
Energy
,
35
(
3
), pp.
1447
1454
.
7.
Wang
,
X. D.
,
Huang
,
Y. X.
,
Cheng
,
C. H.
,
Ta-Wei Lin
,
D.
, and
Kang
,
C. H.
,
2012
, “
A Three-Dimensional Numerical Modeling of Thermoelectric Device With Consideration of Coupling of Temperature Field and Electric Potential Field
,”
Energy
,
47
(
1
), pp.
488
497
.
8.
Chen
,
M.
,
Rosendahl
,
L. A.
, and
Condra
,
T.
,
2011
, “
A Three-Dimensional Numerical Model of Thermoelectric Generators in Fluid Power Systems
,”
Int. J. Heat Mass Transf.
,
54
(
1–3
), pp.
345
355
.
9.
Reddy
,
B. V. K.
,
Barry
,
M.
,
Li
,
J.
, and
Chyu
,
M. K.
,
2014
, “
Convective Heat Transfer and Contact Resistances Effects on Performance of Conventional and Composite Thermoelectric Devices
,”
ASME J. Heat Transfer
,
136
(
10
), p.
101401
.
10.
Reddy
,
B. V. K.
,
Barry
,
M.
,
Li
,
J.
, and
Chyu
,
M. K.
,
2014
, “
Thermoelectric-Hydraulic Performance of a Multistage Integrated Thermoelectric Power Generator
,”
Energy Convers. Manag.
,
77
, pp.
458
468
.
11.
Reddy
,
B. V. K.
,
Barry
,
M.
,
Li
,
J.
, and
Chyu
,
M. K.
,
2013
, “
Thermoelectric Performance of Novel Composite and Integrated Devices Applied to Waste Heat Recovery
,”
ASME J. Heat Transfer
,
135
(
3
), p.
031706
.
12.
Pandit
,
J.
,
Thompson
,
M.
,
Ekkad
,
S. V.
, and
Huxtable
,
S. T.
,
2014
, “
Effect of Pin Fin to Channel Height Ratio and Pin Fin Geometry on Heat Transfer Performance for Flow in Rectangular Channels
,”
Int. J. Heat Mass Transfer
,
77
, pp.
359
368
.
13.
Wang
,
Q.
,
Chen
,
Q.
,
Wang
,
L.
,
Zeng
,
M.
,
Huang
,
Y.
, and
Xiao
,
Z.
,
2007
, “
Experimental Study of Heat Transfer Enhancement in Narrow Rectangular Channel With Longitudinal Vortex Generators
,”
Nucl. Eng. Des.
,
237
(
7
), pp.
686
693
.
14.
Wu
,
J. M.
, and
Tao
,
W. Q.
,
2008
, “
Numerical Study on Laminar Convection Heat Transfer in a Rectangular Channel With Longitudinal Vortex Generator—Part A: Verification of Field Synergy Principle
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1179
1191
.
15.
Chen
,
C.
,
Teng, J. T.
,
Cheng, C. H.
,
Jin, S.
,
Huang, S.
,
Liu, C.
,
Lee, M. T.
,
Pan, H. H.
, and
Greif, R.
,
2014
, “
A Study on Fluid Flow and Heat Transfer in Rectangular Microchannels With Various Longitudinal Vortex Generators
,”
Int. J. Heat Mass Transf.
,
69
, pp.
203
214
.
16.
Tiggelbeck
,
S.
,
Mitra
,
N. K.
, and
Fiebig
,
M.
,
1993
, “
Experimental Investigations of Heat Transfer Enhancement and Flow Losses in a Channel With Double Rows of Longitudinal Vortex Generators
,”
Int. J. Heat Mass Transf.
,
36
(
9
), pp.
2327
2337
.
17.
Wu
,
J. M.
, and
Tao
,
W. Q.
,
2008
, “
Numerical Study on Laminar Convection Heat Transfer in a Channel With Longitudinal Vortex Generator. Part B: Parametric Study of Major Influence Factors
,”
Int. J. Heat Mass Transfer
,
51
(
13–14
), pp.
3683
3692
.
18.
Ma
,
T.
,
Pandit
,
J.
,
Ekkad
,
S. V.
,
Huxtable
,
S. T.
, and
Wang
,
Q.
,
2015
, “
Simulation of Thermoelectric-Hydraulic Performance of a Thermoelectric Power Generator With Longitudinal Vortex Generators
,”
Energy
,
84
, pp.
695
703
.
19.
Reddy
,
B. V. K.
,
Barry
,
M.
,
Li
,
J.
, and
Chyu
,
M. K.
,
2012
, “
Three-Dimensional Multiphysics Coupled Field Analysis of an Integrated Thermoelectric Device
,”
Numer. Heat Transf. Part A
,
62
(
12
), pp.
933
947
.
20.
Sohankar
,
A.
, and
Davidson
,
L.
,
2001
, “
Effect of Inclined Vortex Generators on Heat Transfer Enhancement in a Three-Dimensional Channel
,”
Numer. Heat Transf. Part A
,
39
(
5
), pp.
433
448
.
21.
Lesage
,
F. J.
,
Sempels
,
É. V.
, and
Lalande-Bertrand
,
N.
,
2013
, “
A Study on Heat Transfer Enhancement Using Flow Channel Inserts for Thermoelectric Power Generation
,”
Energy Convers. Manag.
,
75
, pp.
532
541
.
You do not currently have access to this content.