In this paper, a Ranque–Hilsch vortex tube (RHVT) has been optimized utilizing convergent (φ), straight, and divergent (θ) axial angles for hot-tube. Effects of divergent (θ) and convergent (φ) angles on the flow behavior have been investigated by computational fluid dynamic (CFD) techniques. By using a renormalization group (RNG) k–ε turbulence model based on finite volume method, all the computations have been carried out. The isentropic efficiency (ηis) and coefficient of performance (COP) of machine was studied under five different divergent angles (θ), namely 1 deg, 2 deg, 3 deg, 4 deg, and 6 deg, two different convergent (φ) angles (φ) namely 1 deg and 2 deg adjusted to the hot-tube. Furthermore, some geometrical and operational parameters including cold outlet diameter, hot-tube length, and different inlet pressures and mass flow rates have been analyzed in detail (spanwisely) in order to optimize the cooling efficiency of vortex tube (straight). The results show that utilizing the divergent hot-tubes increases the isentropic efficiency (ηis) and COP of device for most values of inlet pressures, and helps to become more efficient than the other shape of vortex tubes (straight and convergent). Finally, some results of the CFD models have been validated by the available experimental and numerical data, which show reasonable agreement, and others are compared qualitatively.

References

References
1.
Ranque, G.
, 1933, “
Experiments on Expansion in a Vortex With Simultaneous Exhaust of Hot Air and Cold Air
,”
J. Phys. Radium
,
4
(7), pp. 112–114.
2.
Pouraria
,
H.
, and
Zangooee
,
M.
,
2012
, “
Numerical Investigation of Vortex Tube Refrigerator With a Divergent Hot Tube
,”
Energy Procedia
,
14
, pp.
1554
1559
.
3.
Khodorkov
,
I.
,
Poshernev
,
N.
, and
Zhidkov
,
M.
,
2003
, “
The Vortex Tube—A Universal Device for Heating, Cooling, Cleaning, and Drying Gases and Separating Gas Mixtures
,”
Chem. Pet. Eng.
,
39
(
7–8
), pp.
409
415
.
4.
Van Patten
,
R.
, and
Gaudio
,
R.
,
1969
, “
Vortex Tube as a Thermal Protective Device
,”
Aerosp. Med.
,
40
(
3
), pp.
289
292
.
5.
Konzen
,
R. B.
,
1971
, “
Gas-Vapor Separation in a Ranque-Hilsch Vortex Tube
,”
Am. Ind. Hyg. Assoc. J.
,
32
(
12
), pp.
820
825
.
6.
Williams
,
A.
,
1971
, “
The Cooling of Methane With Vortex Tubes
,”
J. Mech. Eng. Sci.
,
13
(
6
), pp.
369
375
.
7.
Lucca-Negro
,
O.
, and
O'doherty
,
T.
,
2001
, “
Vortex Breakdown: A Review
,”
Prog. Energy Combust. Sci.
,
27
(
4
), pp.
431
481
.
8.
Park
,
W.-G.
,
2014
, “
Hassan Pouraria
,”
Thermal Sci.
,
18
(
4
), pp.
1173
1189
.
9.
Riu
,
K.-J.
,
Kim
,
J-S.
, and
Choi
,
I.-S.
,
2004
, “
Experimental Investigation on Dust Separation Characteristics of a Vortex Tube
,”
JSME Int. J. Ser. B
,
47
(
1
), pp.
29
36
.
10.
Aydın
,
O.
,
Markal
,
B.
, and
Avcı
,
M.
,
2010
, “
A New Vortex Generator Geometry for a Counter-Flow Ranque–Hilsch Vortex Tube
,”
Appl. Therm. Eng.
,
30
(
16
), pp.
2505
2511
.
11.
Saidi
,
M.
, and
Valipour
,
M.
,
2003
, “
Experimental Modeling of Vortex Tube Refrigerator
,”
Appl. Therm. Eng.
,
23
(
15
), pp.
1971
1980
.
12.
Valipour
,
M. S.
, and
Niazi
,
N.
,
2011
, “
Experimental Modeling of a Curved Ranque–Hilsch Vortex Tube Refrigerator
,”
Int. J. Refrig.
,
34
(
4
), pp.
1109
1116
.
13.
Dincer
,
K.
,
Baskaya
,
S.
, and
Uysal
,
B.
,
2008
, “
Experimental Investigation of the Effects of Length to Diameter Ratio and Nozzle Number on the Performance of Counter Flow Ranque–Hilsch Vortex Tubes
,”
Heat Mass Transfer
,
44
(
3
), pp.
367
373
.
14.
Fröhlingsdorf
,
W.
, and
Unger
,
H.
,
1999
, “
Numerical Investigations of the Compressible Flow and the Energy Separation in the Ranque–Hilsch Vortex Tube
,”
Int. J. Heat Mass Transfer
,
42
(
3
), pp.
415
422
.
15.
Aljuwayhel
,
N.
,
Nellis
,
G.
, and
Klein
,
S.
,
2005
, “
Parametric and Internal Study of the Vortex Tube Using a CFD Model
,”
Int. J. Refrig.
,
28
(
3
), pp.
442
450
.
16.
Behera
,
U.
,
Paul
,
P.
,
Kasthurirengan
,
S.
,
Karunanithi
,
R.
,
Ram
,
S.
,
Dinesh
,
K.
, and
Jacob
,
S.
,
2005
, “
CFD Analysis and Experimental Investigations Towards Optimizing the Parameters of Ranque–Hilsch Vortex Tube
,”
Int. J. Heat Mass Transfer
,
48
(
10
), pp.
1961
1973
.
17.
Behera
,
U.
,
Paul
,
P.
,
Dinesh
,
K.
, and
Jacob
,
S.
,
2008
, “
Numerical Investigations on Flow Behaviour and Energy Separation in Ranque–Hilsch Vortex Tube
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
6077
6089
.
18.
Eiamsa-ard
,
S.
, and
Promvonge
,
P.
,
2007
, “
Numerical Investigation of the Thermal Separation in a Ranque–Hilsch Vortex Tube
,”
Int. J. Heat Mass Transfer
,
50
(
5–6
), pp.
821
832
.
19.
Eiamsa-ard
,
S.
, and
Promvonge
,
P.
,
2008
, “
Numerical Simulation of Flow Field and Temperature Separation in a Vortex Tube
,”
Int. Commun. Heat Mass Transfer
,
35
(
8
), pp.
937
947
.
20.
Skye
,
H.
,
Nellis
,
G.
, and
Klein
,
S.
,
2006
, “
Comparison of CFD Analysis to Empirical Data in a Commercial Vortex Tube
,”
Int. J. Refrig.
,
29
(
1
), pp.
71
80
.
21.
Kazantseva
,
O.
,
Piralishvili
,
S. A.
, and
Fuzeeva
,
A.
,
2005
, “
Numerical Simulation of Swirling Flows in Vortex Tubes
,”
High Temp.
,
43
(
4
), pp.
608
613
.
22.
Farouk
,
T.
, and
Farouk
,
B.
,
2007
, “
Large Eddy Simulations of the Flow Field and Temperature Separation in the Ranque–Hilsch Vortex Tube
,”
Int. J. Heat Mass Transfer
,
50
(
23–24
), pp.
4724
4735
.
23.
Dincer
,
K.
,
Tasdemir
,
S.
,
Baskaya
,
S.
, and
Uysal
,
B.
,
2008
, “
Modeling of the Effects of Length to Diameter Ratio and Nozzle Number on the Performance of Counterflow Ranque–Hilsch Vortex Tubes Using Artificial Neural Networks
,”
Appl. Therm. Eng.
,
28
(
17–18
), pp.
2380
2390
.
24.
Dincer
,
K.
,
Tasdemir
,
S.
,
Baskaya
,
S.
, and
Uysal
,
B. Z.
,
2008
, “
Modeling of the Effects of Plug Tip Angle on the Performance of Counter-Flow Ranque-Hilsch Vortex Tubes Using Artificial Neural Networks
,”
J. Therm. Sci. Technol.
,
28
(
17–18
), pp.
1
7
.
25.
Dincer
,
K.
,
Baskaya
,
S.
,
Uysal
,
B.
, and
Ucgul
,
I.
,
2009
, “
Experimental Investigation of the Performance of a Ranque–Hilsch Vortex Tube With Regard to a Plug Located at the Hot Outlet
,”
Int. J. Refrig.
,
32
(
1
), pp.
87
94
.
26.
Dincer
,
K.
, and
Baskaya
,
S.
,
2009
, “
Assessment of Plug Angle Effect on Exergy Efficiency of Counterflow Ranque-Hilsch Vortex Tubes With the Exergy Analysis Method
,”
J. Fac. Eng. Archit. Gazi Univ.
,
24
(
3
), pp.
533
538
.
27.
Dincer
,
K.
,
Tasdemir
,
S.
,
Baskaya
,
S.
,
Ucgul
,
I.
, and
Uysal
,
B.
,
2008
, “
Fuzzy Modeling of Performance of Counterflow Ranque-Hilsch Vortex Tubes With Different Geometric Constructions
,”
Numer. Heat Transfer, Part B
,
54
(
6
), pp.
499
517
.
28.
Dincer
,
K.
,
Avci
,
A.
,
Baskaya
,
S.
, and
Berber
,
A.
,
2010
, “
Experimental Investigation and Exergy Analysis of the Performance of a Counter Flow Ranque–Hilsch Vortex Tube With Regard to Nozzle Cross-Section Areas
,”
Int. J. Refrig.
,
33
(
5
), pp.
954
962
.
29.
Dincer
,
K.
,
2011
, “
Experimental Investigation of the Effects of Threefold Type Ranque–Hilsch Vortex Tube and Six Cascade Type Ranque–Hilsch Vortex Tube on the Performance of Counter Flow Ranque–Hilsch Vortex Tubes
,”
Int. J. Refrig.
,
34
(
6
), pp.
1366
1371
.
30.
Dincer
,
K.
,
Yilmaz
,
Y.
,
Berber
,
A.
, and
Baskaya
,
S.
,
2011
, “
Experimental Investigation of Performance of Hot Cascade Type Ranque–Hilsch Vortex Tube and Exergy Analysis
,”
Int. J. Refrig.
,
34
(
4
), pp.
1117
1124
.
31.
Bej
,
N.
, and
Sinhamahapatra
,
K.
,
2014
, “
Exergy Analysis of a Hot Cascade Type Ranque-Hilsch Vortex Tube Using Turbulence Model
,”
Int. J. Refrig.
,
45
, pp.
13
24
.
32.
Bovand
,
M.
,
Valipour
,
M. S.
,
Dincer
,
K.
, and
Tamayol
,
A.
,
2014
, “
Numerical Analysis of the Curvature Effects on Ranque–Hilsch Vortex Tube Refrigerators
,”
Appl. Therm. Eng.
,
65
(
1–2
), pp.
176
183
.
33.
Liu
,
X.
, and
Liu
,
Z.
,
2014
, “
Investigation of the Energy Separation Effect and Flow Mechanism Inside a Vortex Tube
,”
Appl. Therm. Eng.
,
67
(
1–2
), pp.
494
506
.
34.
Parulekar
,
B.
,
1961
, “
The Short Vortex Tube
,”
J. Refrig.
,
4
(
4
), pp.
74
80
.
35.
Raiskii
,
Y. D.
,
1974
, “
Influence of Vortex-Tube Configuration and Length on the Process of Energetic Gas Separation
,”
J. Eng. Phys.
,
27
(
6
), pp.
1578
1581
.
36.
Gulyaev
,
A.
,
1966
, “
Investigation of Conical Vortex Tubes
,”
J. Eng. Phys. Thermophys.
,
10
(
3
), pp.
193
195
.
37.
Takahama
,
H.
, and
Yokosawa
,
H.
,
1981
, “
Energy Separation in Vortex Tubes With a Divergent Chamber
,”
ASME J. Heat Transfer
,
103
(
2
), pp.
196
203
.
38.
Chang
,
K.
,
Li
,
Q.
,
Zhou
,
G.
, and
Li
,
Q.
,
2011
, “
Experimental Investigation of Vortex Tube Refrigerator With a Divergent Hot Tube
,”
Int. J. Refrig.
,
34
(
1
), pp.
322
327
.
39.
Rafiee
,
S. E.
,
Sadeghiazad
,
M.
, and
Mostafavinia
,
N.
,
2015
, “
Experimental and Numerical Investigation on Effect of Convergent Angle and Cold Orifice Diameter on Thermal Performance of Convergent Vortex Tube
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
4
), p.
041006
.
40.
Rafiee
,
S.
, and
Sadeghiazad
,
M.
,
2016
, “
Experimental and 3D-CFD Study on Optimization of Control Valve Diameter for a Convergent Vortex Tube
,”
Front. Heat Mass Transfer
,
7
(
1
), pp. 321–336.
41.
ANSYS Fluent
,
2006
, “
Fluent 6.3 Documentation, User's Guide
,” Fluent Inc., Lebanon, NH.
42.
Choudhury
,
D.
,
1973
,
Introduction to the Renormalization Group Method and Turbulence Modeling
,
Fluent
, New York.
43.
Sarkar
,
S.
, and
Balakrishnan
,
L.
, 1990, “
Application of a Reynolds Stress Turbulence Model to the Compressible Shear Layer
,”
AIAA
Paper No. AIAA-90-1465.
44.
Fluent
,
2006
, “
Fluent 6.3 User's Guide
,” Fluent Inc., New York.
45.
Liou
,
M.-S.
,
1996
, “
A Sequel to AUSM: AUSM+
,”
J. Comput. Phys.
,
129
(
2
), pp.
364
382
.
46.
Cebeci
,
T.
, and
Bradshaw
,
P.
,
1977
,
Momentum Transfer in Boundary Layers
,
Hemisphere Publishing
,
New York
, p.
407
.
47.
Launder
,
B.
, and
Spalding
,
D.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Energy
,
3
(
2
), pp.
269
289
.
48.
Viegas
,
J.
,
Rubesin
,
M.
, and
Horstman
,
C.
, 1985, “
On the Use of Wall Functions as Boundary Conditions for Two-Dimensional Separated Compressible Flows
,”
AIAA
Paper No. 1985-180.
49.
Jayatilleke
,
C. L. V.
,
1966
, “
The Influence of Prandtl Number and Surface Roughness on the Resistance of the Laminar Sub-Layer to Momentum and Heat Transfer
,”
Ph.D. thesis
, University of London, London.http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.622651
50.
Kurosaka
,
M.
,
1982
, “
Acoustic Streaming in Swirling Flow and the Ranque–Hilsch (Vortex-Tube) Effect
,”
J. Fluid Mech.
,
124
(
1
), pp.
139
172
.
51.
Gutsol
,
A.
,
1997
, “
The Ranque Effect
,”
Phys.-Usp.
,
40
(
6
), pp.
639
658
.
You do not currently have access to this content.