Analysis of entropy generation in mixed convection flow over a vertically stretching sheet has been carried out in the presence of variable thermal conductivity and energy dissipation. Governing equations are reduced to self-similar ordinary differential equations via similarity transformations and are solved numerically by applying shooting and fourth-order Runge–Kutta techniques. The expressions for entropy generation number and Bejan number are also obtained by using similarity transformations. The influence of embedding physical parameters on quantities of interest is discussed through graphical illustrations. The results reveal that entropy generation number increases significantly in the vicinity of stretching surface and gradually dies out as one move away from the sheet. Also, the entropy generation number decreases with an increase in temperature difference parameter. Moreover, entropy generation number enhances with an enhancement in the Eckert number, Prandtl number, and variable thermal conductivity parameter.

References

References
1.
Ramachandran
,
N.
,
Chen
,
T. S.
, and
Armaly
,
B. F.
,
1988
, “
Mixed Convection in Stagnation Flows Adjacent to Vertical Surfaces
,”
ASME J. Heat Transfer
,
110
, pp.
373
377
.
2.
Patil
,
P. M.
,
Roy
,
S.
, and
Chamka
,
A. J.
,
2009
, “
Double Diffusive Mixed Convection Flow Over a Moving Vertical Plate in the Presence of Internal Heat Generation and a Chemical Reaction
,”
Turk. J. Eng. Environ. Sci.
,
33
, pp.
193
205
.
3.
Aman
,
F.
, and
Ishak
,
A.
,
2012
, “
Mixed Convection Boundary Layer Flow Towards a Vertical Plate With a Convective Surface Boundary Condition
,”
Math. Probl. Eng.
,
2012
, pp.
453
457
.
4.
Chamkha
,
A. J.
, and
Issa
,
C.
,
1999
, “
Mixed Convection Effects on Unsteady Flow and Heat Transfer Over a Stretched Surface
,”
Int. Commun. Heat Mass Transfer
,
26
(
5
), pp.
717
728
.
5.
Chamkha
,
A. J.
,
Takhar
,
H. S.
, and
Nath
,
G.
,
2004
, “
Mixed Convection Flow Over a Vertical Plate With Localized Heating (Cooling), Magnetic Field and Suction (Injection)
,”
Heat Mass Transfer
,
40
(
11
), pp.
835
841
.
6.
Makinde
,
O. D.
, and
Aziz
,
A.
,
2010
, “
MHD Mixed Convection From a Vertical Plate Embedded in a Porous Medium With a Convective Boundary Condition
,”
Int. J. Therm. Sci.
,
49
(
9
), pp.
1813
1820
.
7.
Prasad
,
K. V.
,
Vajravelu
,
K.
, and
Datti
,
P. S.
,
2010
, “
Mixed Convection Heat Transfer Over a Non-Linear Stretching Surface With Variable Fluid Properties
,”
Int. J. Non-Linear Mech.
,
45
(
3
), pp.
320
330
.
8.
Ishak
,
A.
,
2009
, “
Mixed Convection Boundary Layer Flow Over a Horizontal Plate With Thermal Radiation
,”
Heat Mass Transfer
,
46
, pp.
147
151
.
9.
Hsiao
,
K. L.
,
2011
, “
MHD Mixed Convection for Viscoelastic Fluid Past a Porous Wedge
,”
Int. J. Non-Linear Mech.
,
46
(
1
), pp.
1
8
.
10.
Turkyilmazoglu
,
M.
,
2017
, “
Mixed Convection Flow of Magnetohydrodynamic Micropolar Fluid Due to a Porous Heated/Cooled Deformable Plate: Exact Solutions
,”
Int. J. Heat Mass Transfer
,
106
, pp.
127
134
.
11.
Sakiadis
,
B. C.
,
1961
, “
Boundary-Layer Behaviour on Continuous Solid Surfaces: I. Boundary-Layer Equations for Two-Dimensional and Axisymmetric Flow
,”
Am. Inst. Chem. Eng.
,
7
(
1
), pp.
26
28
.
12.
Crane
,
L. J.
,
1970
, “
Flow Past a Stretching Plate
,”
Z. Angew. Math. Phys.
,
21
(
4
), pp.
645
647
.
13.
Chamkha
,
A. J.
,
1999
, “
Hydromagnetic Three-Dimensional Free Convection on a Vertical Stretching Surface With Heat Generation or Absorption
,”
Int. J. Heat Fluid Flow
,
20
(
1
), pp.
84
92
.
14.
Pal
,
D.
,
Mandal
,
G.
, and
Vajravelu
,
K.
,
2014
, “
Flow and Heat Transfer of Nanofluids at a Stagnation Point Flow Over a Stretching/Shrinking Surface in a Porous Medium With Thermal Radiation
,”
Appl. Math. Comput.
,
238
, pp.
208
224
.
15.
Pal
,
D.
,
Vajravelu
,
K.
, and
Mandal
,
G.
,
2014
, “
Convective-Radiation Effects on Stagnation Point Flow of Nanofluids Over a Stretching/Shrinking Surface With Viscous Dissipation
,”
J. Mech.
,
30
(
3
), pp.
289
297
.
16.
Hussanan
,
A.
,
Salleh
,
M. Z.
,
Khan
,
I.
, and
Shafie
,
S.
, 2016, “
Analytical Solution for Suction and Injection Flow of a Viscoplastic Casson Fluid Past a Stretching Surface in the Presence of Viscous Dissipation
,”
Neural Comput. Appl.
, epub.
17.
Khan
,
Z. H.
,
Qasim
,
M.
,
Ishfaq
,
N.
, and
Khan
,
W. A.
,
2017
, “
Dual Solutions of MHD Boundary Layer Flow of a Micropolar Fluid With Weak Concentration Over a Stretching/Shrinking Sheet
,”
Commun. Theor. Phys.
,
67
, pp.
449
457
.
18.
Gupta
,
P. S.
, and
Gupta
,
A. S.
,
1977
, “
Heat and Mass Transfer on Stretching Sheet With Suction or Blowing
,”
Can. J. Chem. Eng.
,
55
(
6
), pp.
744
746
.
19.
Magyari
,
E.
, and
Keller
,
B.
,
1999
, “
Heat and Mass Transfer Over an Exponentially Stretching Continuous Surface
,”
J. Phys. D: Appl. Phys.
,
32
(5), pp.
577
585
.
20.
Elbashbeshy
,
E. M. A.
,
2001
, “
Heat Transfer Over an Exponential Stretching Continuous Surface With Suction
,”
Arch. Mech.
,
53
(6), pp.
643
651
.
21.
Bidin
,
B.
, and
Nazar
,
R.
,
2009
, “
Numerical Solution of the Boundary Layer Flow Over an Exponentially Stretching Sheet With Thermal Radiation
,”
Eur. J. Sci. Res.
,
33
(4), pp.
710
717
.
22.
Partha
,
M. K.
,
Murthy
,
P. V. S. N.
, and
Rajasekhar
,
G. P.
,
2005
, “
Effect of Viscous Dissipation on Mixed Convection Heat Transfer From an Exponentially Stretching Surface
,”
Heat Mass Transfer
,
41
(
4
), pp.
360
366
.
23.
Bhattacharyya
,
K.
, and
Layek
,
G. C.
,
2014
, “
Thermal Boundary Layer in Flow Due to an Exponentially Stretching Surface With an Exponentially Moving Free Stream
,”
Modell. Simul. Eng.
,
2014
, p.
785049
.
24.
Seddeek
,
M. A.
, and
Salma
,
F. A.
,
2007
, “
The Effects of Temperature Dependent Viscosity and Thermal Conductivity on Unsteady MHD Convective Heat Transfer Past a Semi-Infinite Vertical Porous Moving Plate With Variable Suction
,”
Comput. Mater. Sci.
,
40
(
2
), pp.
186
192
.
25.
Sharma
,
P. R.
, and
Singh
,
G.
,
2009
, “
Effects of Variable Thermal Conductivity and Heat Source/Sink on MHD Flow Near a Stagnation Point on a Linearly Stretching Sheet
,”
J. Appl. Fluid Mech.
,
2
(1), pp.
13
21
.
26.
Chaim
,
T. C.
,
1998
, “
Heat Transfer in a Fluid With Variable Thermal Conductivity Over Stretching Sheet
,”
Acta Mech.
,
129
(
1–2
), pp.
63
72
.
27.
Chaim
,
T. C.
,
1996
, “
Heat Transfer With Variable Conductivity in a Stagnation-Point Flow Towards a Stretching Sheet
,”
Int. Commun. Heat Mass Transfer
,
23
(
2
), pp.
239
248
.
28.
Khan
,
W. A.
,
Culham
,
R.
, and
Aziz
,
A.
,
2015
, “
Second Law Analysis of Heat and Mass Transfer of Nanofluids Along a Plate With Prescribed Surface Heat Flux
,”
ASME J. Heat Transfer
,
137
(8), p. 081701.
29.
Makinde
,
O. D.
,
2010
, “
Thermodynamic Second Law Analysis for a Gravity-Driven Variable Viscosity Liquid Film Along an Inclined Heated Plate With Convective Cooling
,”
J. Mech. Sci. Technol.
,
24
(
4
), pp.
899
908
.
30.
Makinde
,
O. D.
,
2006
, “
Irreversibility Analysis for a Gravity Driven Non-Newtonian Liquid Film Along an Inclined Isothermal Plate
,”
Phys. Scr.
,
74
(
6
), pp.
642
645
.
31.
Das
,
S.
,
Jana
,
R. N.
, and
Chamkha
,
A. J.
,
2015
, “
Entropy Generation Due to Unsteady Hydromagnetic Couette Flow and Heat Transfer With Asymmetric Convective Cooling in a Rotating System
,”
J. Math. Modell.
,
3
(2), pp.
111
128
.
32.
Rashidi
,
M. M.
, and
Freidoonimehr
,
N.
,
2014
, “
Analysis of Entropy Generation in MHD Stagnation-Point Flow in Porous Media With Heat Transfer
,”
Int. J. Comput. Methods Eng. Sci. Mech.
,
15
(
4
), pp.
345
355
.
33.
Chamkha
,
A. J.
,
Ismael
,
M.
,
Kasaeipoor
,
A.
, and
Armaghani
,
T.
,
2016
, “
Entropy Generation and Natural Convection of CuO-Water Nanofluid in C-Shaped Cavity Under Magnetic Field
,”
Entropy
,
18
(2), pp. 1–18.
34.
Bejan
,
A.
,
1979
, “
A Study of Entropy Generation in Fundamental Convective Heat Transfer
,”
ASME J. Heat Transfer
,
101
(
4
), pp.
718
725
.
35.
Bejan
,
A.
,
1987
, “
The Thermodynamic Design of Heat and Mass Transfer Processes and Devices
,”
Heat Fluid Flow
,
8
(
4
), pp.
258
276
.
36.
Afridi
,
M. I.
,
Qasim
,
M.
,
Khan
,
I.
,
Shafie
,
S.
, and
Alshomrani
,
A. S.
,
2017
, “
Entropy Generation in Magnetohydrodynamic Mixed Convection Flow Over an Inclined Stretching Sheet
,”
Entropy
,
19
(1), pp.
1
11
.
37.
Dehsara
,
M.
,
Dalir
,
N.
, and
Nobari
,
M. R. H.
,
2014
, “
Numerical Analysis of Entropy Generation in Nanofluid Over a Transparent Plate in Porous Medium in Presence of Solar Radiation, Viscous Dissipation and Variable Magnetic Field
,”
J. Mech. Sci. Technol.
,
28
(
5
), pp.
1819
1831
.
38.
Butt
,
A. S.
,
Munawar
,
S.
,
Ali
,
A.
, and
Mehmood
,
A.
,
2012
, “
Entropy Analysis of Mixed Convection Magnetohydrodynamic Flow of a Viscoelastic Fluid Over a Stretching Sheet
,”
Z. Naturforsch., A
,
67
(8–9), pp.
451
459
.
39.
Matin
,
M. H.
, and
Nobari
,
M. R. H.
,
2012
, “
Entropy Analysis in Mixed Convection MHD Flow of Nanofluid Over a Nonlinear Stretching Sheet
,”
J. Therm. Sci. Technol.
,
7
(
1
), pp.
104
119
.
You do not currently have access to this content.