Deformation-free clamping plays an important role in manufacturing systems helping to ensure zero-defect production. The fixture of workpieces during machining processes poses challenges not only for microparts but also for thin-walled pieces or free-form surfaces in macromanufacturing. To address this challenge, a nontraditional adhesive technique, using frozen water to clamp, is introduced in this paper. By increasing the cooling power and thus reducing the temperature of the clamping plate, higher adhesive ice strength and, therefore, a safer clamping system during machining process, can be achieved. The objective of this investigation is to ensure a stable low temperature and to compensate for thermal disturbances. Thanks to their structural robustness, Lyapunov-based control strategies demonstrate an appropriate capability to achieve these results in real industrial applications. Model design of the clamping system as well as simulation and experimental results are shown and discussed.

References

References
1.
Mironova
,
A.
,
Mercorelli
,
P.
, and
Zedler
,
A.
,
2016
, “
Robust Control Using Sliding Mode Approach for Ice-Clamping Device Activated by Thermoelectric Coolers
,”
IFAC-PapersOnLine
,
49
(25), pp. 470–475.
2.
Jou
,
R.-Y.
,
2006
, “
An Innovative Channel Design of the Freezing Chucker
,”
ASME
Paper No. ESDA2006-95101.
3.
Jou
,
R. Y.
,
2006
, “
Transient Heat Transfer Analysis of Freeze Plate Structures Cooled by Nanofluids
,”
ASME
Paper No. ESDA2006-95100.
4.
Jou
,
R.-Y.
,
2010
, “
Study of the Freezing Chuck for Non-Traditional Clamping Applications
,”
ASME
Paper No. ESDA2010-24197.
5.
Jou
,
R. Y.
,
2010
, “
Modeling of Thermoelectric Coolers for Freezing/Thawing Applications
,”
Key Eng. Mater.
,
419–420
, pp.
33
36.
6.
Kitajima
,
K.
,
Fuji
,
T.
,
Kawashima
,
N.
,
Kumazawa
,
M.
, and
Ishihara
,
I.
,
2004
, “
Fundamental Characteristics of a Freezing Chuck System for Brittle Material Machining
,”
Key Eng. Mater.
,
257–258
, pp.
113
118
.
7.
Hoffmeister
,
H.-W.
, and
Gerdes
,
A.
,
2013
, “
Development and Design of Micro Machine Tool Components Via Numerical Simulation
,”
Prod. Eng. Res. Dev.
,
7
(
5
), pp.
527
533
.
8.
Une
,
A.
,
Ogasawara
,
N.
,
Yoshitomi
,
K.
, and
Mochida
,
M.
,
2013
, “
Development of a Nondeforming Chucking Technique for EUV Lithography
,”
Microelectron. Eng.
,
112
, pp.
278
281
.
9.
Pasternak
,
S.
,
Maier
,
W.
,
Stehle
,
T.
, and
Heisel
,
U.
,
2015
, “
Hybrid Clamping Technology for Flexible Micro Machining
,”
Appl. Mech. Mater.
,
794
, pp.
442
449
.
10.
Heisel, U.
,
Pasternak, S.
, and
Stehle, T.
,
2014
, “
Clamping Stiffness in Micro Clamp Technique—Study of the Static Stiffness of Workpiece Clamping by Using Different Clamping Technologies
,”
wt-online(1/2-2014)
, pp.
66
74
.
11.
Heisel, U.
,
Pasternak, S.
, and
Stehle, T.
, ,
2012
, “
Holding Forces in the Micro Clamp Technique—Study of Holding Forces as a Function of the Micro and Macro Geometry, the Workpiece Material and the Used Clamping Technology
,”
wt-online(7/8-2012)
, pp.
465
472
.
12.
Mironova
,
A.
,
Mercorelli
,
P.
, and
Zedler
,
A.
,
2017
, “
Control of a Two-Thermoelectric-Cooler System for Ice-Clamping Application Using Lyapunov Based Approach
,”
21st International Conference on Process Control
(
PC
), Strbske Pleso, Slovakia, June 6–9, pp.
24
29
.
13.
Song
,
S.
, and
Wang
,
J.
,
2012
, “
Dynamic Model of Thermoelectric Cooler and Temperature Control Based on Adaptive Fuzzy-PID
,”
Appl. Mech. Mater.
,
130–134
, pp.
1919
1924
.
14.
Choi
,
H.-S.
,
Yun
,
S.
,
I.
, and
Whang
,
K.
,
2007
, “
Development of a Temperature-Controlled Car-Seat System Utilizing Thermoelectric Device
,”
Appl. Therm. Eng.
,
27
(
17–18
), pp.
2841
2849
.
15.
Aly
,
A. A.
, and
El-Lail
,
A. S. A.
,
2006
, “
Fuzzy Temperature Control of a Thermoelectric Cooler
,”
IEEE International Conference on Industrial Technology
(
ICIT
), Mumbai, India, Dec. 15–17, pp.
1580
1585
.
16.
Yusop
,
A. M.
,
Mohamed
,
R.
, and
Ayob
,
A.
,
2013
, “
Model Building of Thermoelectric Generator Exposed to Dynamic Transient Sources
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
53
, p.
012015
.
17.
Wang
,
J.
,
Zou
,
K.
, and
Friend
,
J.
,
2009
, “
Minimum Power Loss Control—Thermoelectric Technology in Power Electronics Cooling
,”
IEEE Energy Conversion Congress and Exposition
(
ECCE
), San Jose, CA, Sept. 20–24, pp.
2543
2547
.
18.
Zhao
,
D.
, and
Tan
,
G.
,
2014
, “
A Review of Thermoelectric Cooling: Materials, Modeling and Applications
,”
Appl. Therm. Eng.
,
66
(
1–2
), pp.
15
24
.
19.
Kiziroglou
,
M. E.
,
Wright
,
S. W.
,
Toh
,
T. T.
,
Mitcheson
,
P. D.
,
Becker
,
T.
, and
Yeatman
,
E. M.
,
2014
, “
Design and Fabrication of Heat Storage Thermoelectric Harvesting Devices
,”
IEEE Trans. Ind. Electron
,
61
(
1
), pp.
302
309
.
20.
Felgner
,
F.
,
Exel
,
L.
,
Nesarajah
,
M.
, and
Frey
,
G.
,
2014
, “
Component-Oriented Modeling of Thermoelectric Devices for Energy System Design
,”
IEEE Trans. Ind. Electron
,
61
(
3
), pp.
1301
1310
.
21.
Goupil
,
C.
,
Ouerdane
,
H.
,
Zabrocki
,
K.
,
Seifert
,
W.
,
Hinsche
,
N. F.
, and
Müller
,
E.
,
2016
,
Continuum Theory and Modeling of Thermoelectric Elements
,
Wiley-VCH Verlag GmbH & Co KGaA
,
Weinheim, Germany
.
22.
Wang
,
X.-D.
,
Huang
,
Y.-X.
,
Cheng
,
C.-H.
,
Lin
,
D. T.-W.
, and
Kang
,
C.-H.
,
2012
, “
A Three-Dimensional Numerical Modeling of Thermoelectric Device With Consideration of Coupling of Temperature Field and Electric Potential Field
,”
Energy
,
47
(
1
), pp.
488
497
.
23.
Mironova
,
A.
,
Mercorelli
,
P.
,
Zedler
,
A.
, and
Karaman
,
E.
,
2017
, “
A Model Based Feedforward Regulator Improving Pi Control of an Ice-Clamping Device Activated by Thermoelectric Cooler
,”
IEEE/ASME International Conference on Advanced Intelligent Mechatronics
(
AIM
), Munich, Germany, July 3–7, pp.
484
489
.
24.
FISCHER ELEKTRONIK
,
2018
, “
Cooling Aggregates With Axial Fan
,” Fischer Elektronik GmbH, Lüdenscheid, Germany, Datasheet, Part No. LA 6 250 24.
25.
Penn
,
L. S.
, and
Meyerson
,
A.
,
1992
, “
Ice-Pavement Bond Prevention: Fundamental Study
,” Strategic Highway Research Program National Research Council, Washington, DC, Report No.
SHRP-W/UFR-92-606.
http://onlinepubs.trb.org/onlinepubs/shrp/SHRP-92-606.pdf
26.
Makkonen
,
L.
,
2012
, “
Ice Adhesion-Theory, Measurements and Countermeasures
,”
J. Adhes. Sci. Technol.
,
26
(
4–5
), pp.
413
445
.https://www.tandfonline.com/doi/abs/10.1163/016942411X574583
27.
Yeong
,
Y. H.
,
Loth
,
E.
,
Sokhey
,
J.
, and
Lambourne
,
A.
,
2015
, “
Ice Adhesion Performance of Superhydrophobic Coatings in Aerospace Icing Conditions
,”
SAE
Paper No. 2015-01-2120.
28.
Goupil
,
C.
,
Seifert
,
W.
,
Zabrocki
,
K.
,
Müller
,
E.
, and
Snyder
,
G. J.
,
2011
, “
Thermodynamics of Thermoelectric Phenomena and Applications
,”
Entropy
,
13
(
8
), pp.
1481
1517
.
29.
Chen
,
M.
,
Gao
,
J.
,
Kang
,
Z.
, and
Zhang
,
J.
,
2016
, “
Accuracy Enhancement of Thermoelectric Simulation by Modeling the Electrical Contact
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
4
), p.
044502
.
30.
Agarwal
,
V.
, and
Parthasarathy
,
H.
,
2016
, “
Disturbance Estimator as a State Observer With Extended Kalman Filter for Robotic Manipulator
,”
Nonlinear Dyn.
,
85
(
4
), pp.
2809
2825
.
31.
Mercorelli
,
P.
,
2010
, “
An Observer for Sensorless Variable Valve Control in Camless Internal Combustion Engines
,”
Sixth IFAC Symposium on Advances in Automotive Control
, Munich, Germany, July 12–14, pp.
306
311
.
You do not currently have access to this content.