In this study, the influence of the applied magnetic field is investigated for magneto-micropolar fluid flow through an inclined channel of parallel porous plates with constant pressure gradient. The lower plate is maintained at constant temperature and the upper plate at a constant heat flux. The governing motion and energy equations are coupled while the effect of the applied magnetic field is taken into account, adding complexity to the already highly correlated set of differential equations. The governing equations are solved numerically by explicit Runge–Kutta. The velocity, microrotation, and temperature results are used to evaluate second law analysis. The effects of characteristic and dominate parameters such as Brinkman number, Hartmann Number, Reynolds number, and micropolar viscosity parameter are discussed on velocity, temperature, microrotation, entropy generation, and Bejan number in different diagrams. The results depicted that the entropy generation number rises with the increase in Brinkman number and decays with the increase in Hartmann Number, Reynolds number, and micropolar viscosity parameter. The application of the magnetic field induces resistive force acting in the opposite direction of the flow, thus causing its deceleration. Moreover, the presence of magnetic field tends to increase the contribution of fluid friction entropy generation to the overall entropy generation; in other words, the irreversibilities caused by heat transfer reduced. Therefore, to minimize entropy, Brinkman number and Hartmann Number need to be controlled.

References

References
1.
Eringen
,
A. C.
,
1966
, “
Theory of Micropolar Fluids
,”
J. Math. Mech.
,
16
(1), pp.
1
18
.http://www.jstor.org/stable/24901466
2.
Eringen
,
A. C.
,
1976
,
Continuum Physics
,
Academic Press
,
New York
, pp.
2
29
.
3.
Lukaszewicz
,
G.
,
1999
,
Micropolar Fluids, Theory and Applications
,
Birkhauser
,
Boston, MA
.
4.
Sui
,
J.
,
Zhao
,
P.
,
Cheng
,
Z.
,
Zheng
,
L.
, and
Zhang
,
X.
,
2017
, “
A Novel Investigation of a Micropolar Fluid Characterized by Nonlinear Constitutive Diffusion Model in Boundary Layer Flow and Heat Transfer
,”
Phys. Fluids
,
29
(
2
), p.
023105
.
5.
Guram
,
G. S.
, and
Anwar
,
M.
,
1979
, “
Steady Flow of a Micropolar Fluid Due to a Rotating Disk
,”
J. Eng. Math.
,
13
(
3
), pp.
223
234
.
6.
Rashidi
,
M. M.
,
Mohimanian Pour
,
S. A.
, and
Laraqi
,
N.
,
2010
, “
A Semi-Analytical Solution of Micropolar Flow in a Porous Channel With Mass Injection by Using Differential Transform Method
,”
Nonlinear Anal-Model.
,
15
(
3
), pp.
341
350
.https://www.researchgate.net/publication/235327324
7.
Xinhui
,
S.
,
Si
,
X.
,
Zheng
,
L.
,
Lin
,
P.
,
Zhang
,
X.
, and
Zhang
,
Y.
,
2013
, “
Flow and Heat Transfer of a Micropolar Fluid in a Porous Channel With Expanding or Contracting Walls
,”
Int. J. Heat Mass Transfer
,
67
, pp.
885
895
.
8.
Abd El-Aziz
,
M.
,
2013
, “
Mixed Convection Flow of a Micropolar Fluid From an Unsteady Stretching Surface With Viscous Dissipation
,”
J. Egypt. Math. Soc.
,
21
(
3
), pp.
385
394
.
9.
Duran
,
M.
,
Ferreira
,
J.
, and
Rojas-medar
,
M. A.
,
2002
, “
Reproductive Weak Solutions of Magneto-Micropolar Fluid Equations in Exterior Domains
,”
Math. Comput. Modell.
,
35
(
7–8
), pp.
779
791
.
10.
Ahmadi
,
G.
, and
Shahinpoor
,
M.
,
1974
, “
Universal Stability of Magneto-Micropolar Fluid Motions
,”
Int. J. Eng. Sci.
,
12
(
7
), pp.
657
663
.
11.
Khan
,
S. M.
,
Hammad
,
M.
,
Batool
,
M.
, and
Kaneez
,
H.
,
2017
, “
Investigation of MHD Effects and Heat Transfer for the Upper-Convected Maxwell (UCM-M) Micropolar Fluid With Joule Heating and Thermal Radiation Using a Hyperbolic Heat Flux Equation
,”
Eur. Phys. J. Plus
,
132
, p.
158
.
12.
Pranesh
,
S.
, and
Kiran
,
R. V.
,
2010
, “
Study of Rayleigh-Bénard Magneto Convection in a Micropolar Fluid With Maxwell-Cattaneo Law
,”
Appl. Math.
,
1
(
6
), pp.
470
480
.
13.
Ziaul Haque
,
M.
,
Mahmud Alam
,
M.
,
Ferdows
,
M.
, and
Postelnicu
,
A.
,
2012
, “
Micropolar Fluid Behaviors on Steady MHD Free Convection and Mass Transfer Flow With Constant Heat and Mass Fluxes, Joule Heating and Viscous Dissipation
,”
J. King Saud Univ. Eng. Sci.
,
24
(
2
), pp.
71
84
.
14.
Naveed
,
M.
,
Abbas
,
Z.
, and
Sajid
,
M.
,
2016
, “
MHD Flow of Micropolar Fluid Due to a Curved Stretching Sheet With Thermal Radiation
,”
J. Appl. Fluid Mech.
,
9
(
1
), pp.
131
138
.
15.
Ferdows
,
M.
,
Nag
,
P.
,
Postelnicu
,
A.
, and
Vajravelu
,
K.
,
2013
, “
Hydro-Magnetic Convection Heat Transfer in a Micropolar Fluid Over a Vertical Plate
,”
J. Appl. Fluid Mech.
,
6
(
2
), pp.
285
299
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.916.9077&rep=rep1&type=pdf
16.
Govardhan
,
K.
, and
Kishan
,
N.
,
2012
, “
Unsteady MHD Boundary Layer Flow of an Incompressible Micropolar Fluid Over a Stretching Sheet
,”
J. Appl. Fluid Mech.
,
5
(
3
), pp.
23
28
.http://www.google.co.in/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=0ahUKEwiOio_I8onaAhUS7FMKHSYWA9gQFggzMAE&url=http%3A%2F%2Fjafmonline.net%2FJournalArchive%2Fdownload%3Ffile_ID%3D26885%26issue_ID%3D209&usg=AOvVaw1X9bGmFcOdQOAAT_tfiG9M
17.
Tetbirt
,
A.
,
Bouaziz
,
M. N.
, and
Tahar Abbes
,
M.
,
2016
, “
Numerical Study of Magnetic Effect on the Velocity Distribution Field in a Macro/Micro-Scale of a Micropolar and Viscous Fluid in Vertical Channel
,”
J. Mol. Liq.
,
216
, pp.
103
110
.
18.
Ramzan
,
M.
,
Farooq
,
M.
,
Hayat
,
T.
, and
Chung
,
J. D.
,
2016
, “
Radiative and Joule Heating Effects in the MHD Flow of a Micropolar Fluid With Partial Slip and Convective Boundary Condition
,”
J. Mol. Liq.
,
221
, pp.
394
400
.
19.
Swapna
,
G.
,
Kumar
,
L.
,
Rana
,
P.
,
Kumari
,
A.
, and
Singh
,
B.
,
2017
, “
Finite Element Study of Radiative Double-Diffusive Mixed Convection Magneto-Micropolar Flow in a Porous Medium With Chemical Reaction and Convective Condition
,”
Alexandria Eng. J.
,
57
(
1
), pp.
107
120
.
20.
Batool
,
K.
, and
Ashraf
,
M.
,
2013
, “
Stagnation Point Flow and Heat Transfer of a Magneto-Micropolar Fluid Towards a Shrinking Sheet With Mass Transfer and Chemical Reaction
,”
J. Mech.
,
29
(
3
), pp.
411
422
.
21.
Srinivasacharya
,
D.
, and
Shiferaw
,
M.
,
2009
, “
Magnetohydrodynamic Flow of a Micropolar Fluid in a Circular Pipe With Hall Effects
,”
Anziam J.
,
51
(
2
), pp.
277
285
.
22.
Hazbavi
,
A.
,
2016
, “
Second Law Analysis of Magnetorheological Rotational Flow With Viscous Dissipation
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
2
), p.
021020
.
23.
Ramana Murthy
,
J. V.
, and
Srinivas
,
J.
,
2013
, “
Second Law Analysis for Poiseuille Flow of Immiscible Micropolar Fluids in a Channel
,”
Int. J. Heat Mass Transfer
,
65
, pp.
254
264
.
24.
Srinivasacharya
,
D.
, and
Hima Bindu
,
K.
,
2016
, “
Entropy Generation in a Micropolar Fluid Flow Through an Inclined Channel
,”
Alexandria Eng. J.
,
55
(
2
), pp.
973
982
.
25.
Hayat
,
T.
,
Khan
,
M.
, and
Ayub
,
M.
,
2004
, “
Couette Poiseuille Flows an Oldroyd 6-Constant Fluid With Magnetic Field
,”
J. Math. Anal. Appl.
,
298
(
1
), pp.
225
244
.
26.
Bejan
,
A.
,
1979
, “
A Study of Entropy Generation in Fundamental Convective Heat Transfer
,”
ASME J. Heat Transfer
,
101
(
4
), pp.
718
725
.
27.
Paoletti
,
S.
,
Rispoli
,
F.
, and
Sciubba
,
E.
,
1989
, “
Calculation of Exergetic Losses in Compact Heat Exchanger Passages
,”
ASME AES
,
10
(
2
), pp.
21
29
.http://jglobal.jst.go.jp/en/public/200902087101228908
28.
Sottas
,
G.
,
1984
, “Dynamic Adaptive Selection Between Explicit and Implicit Methods When Solving ODEs,” University of Geneve, Geneva, Switzerland.
29.
Robertson
,
B. C.
,
1987
, “Detecting Stiffness With Explicit Runge-Kutta Formulas,” University of Toronto, Toronto, ON, Canada, Report No. 193/87.
30.
Kucaba-Pietal
,
A.
,
2004
, “
Microchannels Flow Modeling With the Micro-Polar Fluid Theory
,”
Bull. Pol. Acad. Sci.
,
52
(3), pp.
209
214
.http://bulletin.pan.pl/(52-3)209.pdf
31.
Ariman
,
T.
, and
Cakmak
,
A. S.
,
1968
, “
Some Basic Viscous Flows in Micropolar Fluids
,”
Rheol. Acta
,
7
(
3
), pp.
236
242
.
32.
Umavathi
,
J. C.
,
Chamkha
,
A. J.
,
Mateen
,
A.
, and
Al-Mudhaf
,
2005
, “
Unsteady Two Fluid Flow and Heat Transfer in a Horizontal Channel
,”
Heat Mass Transfer
,
42
(
2
), pp.
81
90
.
33.
Kumar
,
J. P.
,
Umavathi
,
J. C.
,
Chamkha
,
A. J.
, and
Pop
,
I.
,
2010
, “
Fully-Developed Free-Convective Flow of Micropolar and Viscous Fluids in a Vertical Channel
,”
Appl. Math. Modell.
,
34
(
5
), pp.
1175
1186
.
34.
Asia
,
Y.
,
Kashif
,
A.
, and
Muhammad
,
A.
,
2016
, “
MHD Unsteady Flow and Heat Transfer of Micropolar Fluid Through Porous Channel With Expanding or Contracting Walls
,”
JAFM
,
9
(
4
), pp.
1807
1817
.
You do not currently have access to this content.