This study deals with the film cooling enhancement in a combustion chamber by the use of rectangular winglet vortex generators (VGs). Rectangular winglet pair (RWP) in both the common-flow up and the common-flow down configuration is installed upstream of a coolant injection hole on the lower chamber wall. A three-dimensional numerical approach with complete solution of Navier–Stokes (NS) equations closed by the k–ɛ turbulence model is used for analyzing the effect of VG installation on film cooling effectiveness enhancement. The effect of RWP orientation is investigated to deduce the best configuration which is then optimized in terms of its geometrical parameters including its upstream distance from the hole and the angle it makes with the incoming flow. Results obtained show that a RWP located upstream of the coolant hole in common-flow down configuration gives the best effectiveness enhancement with certain other geometrical parameters specified. A novel “mushroom” adiabatic distribution scheme for film cooling effectiveness and temperature has been discussed in the paper. This characteristic scheme is developed as a result of RWPs' vortices interaction with the coolant inlet jet and the hot mainstream flow. A detailed discussion of the mechanisms and the flow field properties underlying the effectiveness enhancement and other phenomenon observed has also been presented in the paper.

References

References
1.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
441
445
.
2.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Ramsey
,
J. W.
,
1968
, “
Film Cooling With Injection Through Holes: Adiabatic Wall Temperatures Downstream of a Circular Hole
,”
J. Eng. Power
,
90
(
4
), pp.
384
395
.
3.
Goldstein
,
R. J.
,
1971
, “
Film Cooling Advances in Heat Transfer
,”
Advances in Heat Transfer
, Vol.
7
,
Academic Press
,
New York
, pp.
321
379
.
4.
Bergeles
,
G.
,
Gosman
,
A. D.
, and
Launder
,
B. E.
,
1976
, “
The Near Field Character of a Jet Discharged Normal to a Main Stream
,”
ASME J. Heat Transfer
,
98
(
3
), pp.
373
378
.
5.
Bergeles
,
G.
,
Gosman
,
A. D.
, and
Launder
,
B. E.
,
1977
, “
Near-Field Character of a Jet Discharged Through a Wall at 30 Degrees to a Mainstream
,”
AIAA J.
,
15
(
4
), pp.
499
504
.
6.
Andreopoulos
,
J.
, and
Rodi
,
W.
,
1984
, “
Experimental Investigation of Jets in a Crossflow
,”
J. Fluid Mech.
,
138
(
1
), pp.
92
127
.
7.
Baheri
,
S.
,
Tabrizi
,
S. P. A.
, and
Jubran
,
B. A.
,
2008
, “
Film Cooling Effectiveness From Trenched Shaped and Compound Holes
,”
Heat Mass Transfer
,
44
(
8
), pp.
989
998
.
8.
Wright
,
L. M.
,
McClain
,
S. T.
, and
Clemenson
,
M. D.
,
2011
, “
Effect of Density Ratio on Flat Plate Film Cooling With Shaped Holes Using PSP
,”
ASME J. Turbomach.
,
133
(
4
), p.
041011
.
9.
Zaman
,
K. B. M. Q.
,
Rigby
,
D. L.
, and
Heidmann
,
J. D.
,
2010
, “
Experimental Study of an Inclined Jet-in-Cross-Flow Interacting With a Vortex Generator
,”
AIAA
Paper No. 2010-88.
10.
Haven
,
B. A.
, and
Kurosakal
,
M.
,
1996
, “
Improved Jet Coverage Through Vortex Cancellation
,”
AIAA J.
,
34
(
11
), pp.
2443
2444
.
11.
Shinn
,
A. F.
, and
Vanka
,
S. P.
,
2011
, “
Numerical Simulation of a Film-Cooling Flow With a Micro-Ramp Vortex Generator
,”
AIAA
Paper No. 2011-767.
12.
Rigby
,
D. L.
, and
Heidmann
,
J. D.
,
2008
, “
Improved Film Cooling Effectiveness by Placing a Vortex Generator Downstream of Each Hole
,”
ASME
Paper No. GT2008-51361.
13.
Sarkar
,
S.
, and
Ranakoti
,
G.
,
2015
, “
Effect of Vortex Generators on Film Cooling Effectiveness
,”
ASME
Paper No. GTINDIA2015-1392.
14.
Sangkwon
,
N.
, and
Shih
,
T. I.-P.
,
2007
, “
Increasing Adiabatic Film-Cooling Effectiveness by Using an Upstream Ramp
,”
ASME J. Heat Transfer
,
129
(
4
) , pp.
464
471
.
15.
Zaman
,
K. B. M. Q.
, and
Fross
,
J. K.
,
1997
, “
The Effect of Vortex Generators on a Jet in a Cross-Flow
,”
Am. Inst. Phys.: Phys. Fluids
,
9
(
1
), pp.
106
114
.
16.
Russell
,
C. M. B.
,
Jones
,
T. V.
, and
Lee
,
G. H.
,
1982
, “
Heat Transfer Enhancement Using Vortex Generators
,”
Seventh International Heat Transfer Conference
(
IHTC
), San Francisco, CA, Aug. 17–22, pp.
2909
2913
.http://www.ihtcdigitallibrary.com/conferences/18465542600d30cc,6f5407c56e13085f,408afb5324a8b620.html
17.
Turk
,
A. Y.
, and
Junkhan
,
G. H.
,
1986
, “
Heat Transfer Enhancement Downstream of Vortex Generators on a Flat Plate
,”
Eighth International Heat Transfer Conference
(
IHTC
), San Francisco, CA, Aug. 17–22, pp.
2903
2908
.http://www.ihtcdigitallibrary.com/conferences/57dcad5042ab3940,70c320450def1765,7ccfa1e850482f3d.html
18.
Fiebig
,
M.
,
Kallweit
,
P.
,
Mitra
,
N.
, and
Tiggelbeck
,
S.
,
1991
, “
Heat Transfer Enhancement and Drag by Longitudinal Vortex Generators in Channel Flow
,”
Exp. Therm. Fluid Sci.
,
4
(
1
), pp.
103
114
.
19.
Chu
,
P.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2009
, “
Three-Dimensional Numerical Study of Flow and Heat Transfer Enhancement Using Vortex Generators in Fin-and-Tube Heat Exchangers
,”
ASME J. Heat Transfer
,
131
(
9
), p.
091903
.
20.
He
,
Y.-L.
,
Chu
,
P.
,
Tao
,
W. Q.
,
Zhang
,
Y.
, and
Tao
,
X.
,
2012
, “
Analysis of Heat Transfer and Pressure Drop for Fin-and-Tube Heat Exchangers With Rectangular Winglet Type Vortex Generators
,”
Appl. Therm. Eng.
,
61
(
2
), pp.
770
783
.
21.
Agarwal
,
S.
, and
Sharma
,
R. P.
,
2016
, “
Numerical Investigation of Heat Transfer Enhancement Using Hybrid Vortex Generator Arrays in Fin-and-Tube Heat Exchangers
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
3
), p.
031007
.
22.
Joardar
,
A.
, and
Jacobi
,
A. M.
,
2008
, “
Heat Transfer Enhancement by Winglet-Type Vortex Generator Arrays in Compact Plain-Fin-and-Tube Heat Exchangers
,”
Int. J. Refrig.
,
31
(
1
), pp.
87
97
.
23.
Torii
,
K.
,
Kwak
,
K.
, and
Nishino
,
K.
,
2002
, “
Heat Transfer Enhancement Accompanying Pressure-Loss Reduction With Winglet-Type Vortex Generators for Fin-and-Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
45
(
18
), pp.
3795
3801
.
24.
Yuen
,
R. F.
, and
Martinez-Botas
,
C. H. N.
,
2003
, “
Film Cooling Characteristics of Rows of Round Holes at Various Streamwise Angles in a Crossflow, Part I: Effectiveness
,”
Int. J. Heat Mass Transfer
,
46
(
23–24
), pp.
4995
5016
.
25.
Acharya
,
S.
,
1999
, “
Large Eddy Simulations and Turbulence Modeling for Film Cooling
,” National Aeronautics and Space Administration, Washington, DC, Report No.
1999-209310
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19990111593.pdf
You do not currently have access to this content.