This paper explores the effects of porosity, pore size, and ligament geometry in metal foams on its fluid flow capability. The motivation to understand this phenomenon stems from exploring the use of metal foams for thermal energy dissipation applications where both thermal convection and fluid flow are desired. The goal of this research is to identify the optimum configuration of metal foam design parameters for maximum flow. To study the impacts of said parameters, an experimental study of air flow through open cell metal foams is performed. Seven foam blocks were used in this partial factorial study, representing varying materials, pore size, and porosity. Wind tunnel tests are performed to measure the velocity of air flowing through the foam as a function of the free stream air velocity. Multinomial logit regression was performed to analyze the effects of the design parameters on velocity loss through the foam. Results indicate that effect of porosity on velocity loss is significant while that of pore size is insignificant. However, one test result did not fit this trend and further investigation revealed that this was due to varying ligament geometry in outlier metal foam. The cross section shape of the ligaments varied from a convex triangular shape to a triangle shape with concave surfaces, increasing the amount of drag in the airflow through the sample.

References

References
1.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
,
2006
, “
Direct Simulation of Transport in Open-Cell Metal Foam
,”
ASME J. Heat Transfer
,
128
(
8
), pp.
793
799
.
2.
Jo
,
C.
,
Fu
,
J.
, and
Naguib
,
H. E.
,
2005
, “
Constitutive Modeling for Mechanical Behavior of PMMA Microcellular Foams
,”
Polymer
,
46
(
25
), pp.
11896
11903
.
3.
Ahmed
,
A.
,
Fahim
,
A.
, and
Naguib
,
H.
,
2008
, “
A Study on the Design and Mechanical Adhesion of Polymer Foam-Metal Joints
,”
ASME J. Eng. Mater. Technol.
,
130
(
3
), p.
031011
.
4.
Gibson
,
J. L.
, and
Ashby
,
M. F.
,
1997
,
Cellular Solids-Structure and Properties
,
Cambridge University Press
,
Cambridge, UK
.
5.
Kabir
,
M. E.
,
Saha
,
M. C.
, and
Jeelani
,
S.
,
2006
, “
Tensile and Fracture Behavior of Polymer Foams
,”
Mater. Sci. Eng.
,
429
(
1–2
), pp.
225
235
.
6.
McIntyre
,
A.
, and
Anderton
,
G. E.
,
1979
, “
Fracture Properties of a Rigid Polyurethane Foam Over a Range of Densities
,”
Polymer
,
20
(
2
), pp.
247
253
.
7.
Kanny
,
K.
,
Mahfuz
,
H.
,
Thomas
,
T.
, and
Jeelani
,
S.
,
2004
, “
Static and Dynamic Characterization of Polymer Foam Under Shear Loads
,”
J. Compos. Mater.
,
38
(
8
), pp.
629
639
.
8.
Subhash
,
G.
,
Liu
,
Q.
, and
Gao
,
X. L.
,
2006
, “
Quasistatic and High Rate Strain Rate Uniaxial Compressive Response of Polymeric Structural Foams
,”
Int. J. Impact Eng.
,
32
(
7
), pp.
1113
1126
.
9.
Huang
,
W. H.
,
2003
, “
A Simple Approach to Estimate Failure Surface of Polymer and Aluminum Foams Under Multiaxial Loads
,”
Int. J. Mech. Sci.
,
45
(
9
), pp.
1531
1540
.
10.
Zhang
,
Y.
,
Rodrigue
,
D.
, and
Kadi
,
A. A.
,
2003
, “
High Density Polyethylene Foams—IV: Flexural and Tensile Moduli of Structural Foams
,”
J. Appl. Polym. Sci.
,
90
(
8
), pp.
2139
2149
.
11.
Wouterson
,
E. M.
,
Boey
,
F. Y. C.
, and
Hu
,
X.
,
2004
, “
Fracture and Impact Toughness of Syntactic Foams
,”
J. Cell. Plast.
,
40
(
2
), pp.
145
154
.
12.
Salazar
,
J. M. G.
,
Barrena
,
M. I.
,
Morales
,
G.
,
Matesanz
,
N.
, and
Merino
,
N.
,
2006
, “
Compression Strength and Wear Resistance of Ceramic Foams–Polymer Composites
,”
Mater. Lett.
,
60
(
13–14
), pp.
1687
1692
.
13.
Zhou
,
J.
,
Gao
,
Z.
,
Cuitino
,
A. M.
, and
Soboyejo
,
W. O.
,
2005
, “
Fatigue of As-Fabricated Open Cell Aluminum Foams
,”
ASME J. Eng. Mater. Technol.
,
127
(
1
), pp.
40
45
.
14.
Morkos
,
B.
,
Shankar
,
P.
,
Teegavarapu
,
S.
,
Michaelraj
,
A.
,
Summers
,
J. D.
, and
Obieglo
,
A.
,
2009
, “
Conceptual Development of Automotive Forward Lighting System Using White Light Emitting Diodes
,”
SAE Int. J. Passenger Cars - Electron. Electr. Syst.
,
2
(
1
), pp.
201
211
.
15.
Dukhan
,
N.
,
Bagci
,
O.
, and
Ozdemir
,
M.
,
2015
, “
Thermal Development in Open-Cell Metal Foam: An Experiment With Constant Wall Heat Flux
,”
Int. J. Heat Mass Transfer
,
85
, pp.
852
859
.
16.
Hess
,
T.
,
Morkos
,
B.
,
Bowman
,
M.
, and
Summers
,
J. D.
,
2011
, “Cross Analysis of Metal Foam Design Parameters for Achieving Desired Fluid Flow,”
ASME
Paper No. IMECE2011-64916.
17.
Zhao
,
C. Y.
,
2012
, “
Review on Thermal Transport in High Porosity Cellular Metal Foams With Open Cells
,”
Int. J. Heat Mass Transfer
,
55
(
13–14
), pp.
3618
3632
.
18.
Paek
,
J. W.
,
Kang
,
B. H.
,
Kim
,
S. Y.
, and
Hyun
,
J. M.
,
2000
, “
Effective Thermal Conductivity and Permeability of Aluminum Foam Materials
,”
Int. J. Thermophys.
,
21
(
2
), pp.
453
464
.
19.
Salimi Jazi
,
H. R.
,
Mostaghimi
,
J.
,
Chandra
,
S.
,
Persin
,
L.
, and
Coyle
,
T.
,
2010
, “
Spray-Formed, Metal-Foam Heat Exchangers for High Temperature Applications
,”
ASME J. Therm. Sci. Eng. Appl.
,
1
(
3
), p.
031008
.
20.
Lu
,
T. J.
,
1999
, “
Heat Transfer Efficiency of Metal Honeycombs
,”
Int. J. Heat Mass Transfer
,
42
(
11
), pp.
2031
2040
.
21.
Seepersad
,
C.
,
Allen
,
J. K.
,
McDowell
,
D. L.
, and
Misstree
,
F.
,
2008
, “
Multifunctional Topology Design of Cellular Material Structures
,”
ASME J. Mech. Des.
,
130
(
3
), p.
031404
.
22.
Ashby
,
M. F.
,
Evans
,
A. G.
,
Fleck
,
N. A.
,
Gibson
,
L. J.
,
Hutchingson
,
J. W.
, and
Wadley
,
H. N.
,
2000
,
Metal Foams a Design Guide
,
Butterworth-Heinemann
,
Oxford, UK
.
23.
Baril
,
E.
,
Mostafid
,
A.
,
Lefebvre
,
L.-P.
, and Medraj, M.,
2010
, “
Experimental Demonstration of Entrance/Exit Effects on the Permeability Measurements of Porous Materials
,”
Adv. Eng. Mater.
,
10
(
9
), pp.
889
894
.
24.
Mahjooba
,
S.
, and
Vafai
,
K.
,
2008
, “
A Synthesis of Fluid and Thermal Transport Models for Metal
,”
Int. J. Heat Mass Transfer
,
51
(
15–16
), pp.
3701
3711
.
25.
Tianjian
,
L.
,
2002
, “
Ultralight Porous Metals: From Fundamentals to Applications
,”
Acta Mech. Sin. Chin. J. Mech.
,
18
(
5
), pp.
457
479
.
26.
Dukhan
,
N.
, and
Patel
,
K. P.
,
2010
, “
Entrance and Exit Effects for Fluid Flow in Metal Foam
,”
AIP Conf. Proc.
, 1254, pp. 299–304.
27.
Dukhan
,
N.
,
Quiñones-Ramos
,
P. D.
,
Cruz-Ruiz
,
E.
,
Vélez-Reyes
,
M.
, and
Scott
,
E. P.
,
2005
, “
One-Dimensional Heat Transfer Analysis in Open-Cell
,”
Int. J. Heat Mass Transfer
,
48
(
25–26
), pp.
5112
5120
.
28.
Kaviany
,
M.
,
1995
,
Principles of Heat Transfer in Porous Media
,
2nd ed.
,
Springer
,
New York
.
29.
Tadrist
,
L.
,
Miscevic
,
M.
,
Rahli
,
O.
, and
Topina
,
F.
,
2004
, “
About the Use of Fibrous Materials in Compact Heat Exchangers
,”
Exp. Therm. Fluid Sci.
,
28
(
2–3
), pp.
193
199
.
30.
Boomsma
,
K.
, and
Poulikakos
,
D.
,
2002
, “
The Effects of Compression and Pore Size Variations on the Liquid Flow Characteristics in Metal Foams
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
263
273
.
31.
Hunt
,
M. L.
, and
Tien
,
C. L.
,
1988
, “
Effect of Thermal Dispersion in Forced Convection in Fibrous Media
,”
Int. J. Heat Mass Transfer
,
31
(
2
), pp.
301
309
.
32.
Mantle
,
W. J.
, and
Chang
,
W. S.
,
1991
, “
Effective Thermal Conductivity of Sintered Metal Fibers
,”
J. Thermophys. Heat Transfer
,
5
(
4
), pp.
545
549
.
33.
Farsad
,
E.
,
Abbasi
,
S. P.
, and
Zabihi
,
M. S.
,
2014
, “
Fluid Flow and Heat Transfer in a Novel Microchannel Heat Sink Partially Filled With Metal Foam Medium
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
2
), p.
021011
.
34.
Jin
,
L. W.
,
Leong
,
K. C.
,
Pranoto
,
I.
,
Li
,
H. Y.
, and
Chai
,
J. C.
,
2011
, “
Experimental Study of a Two-Phase Thermosyphon With Porous Graphite Foam Insert
,”
ASME J. Therm. Sci. Eng. Appl.
,
3
(
2
), p.
024502
.
35.
Bayomy
,
A. M.
, and
Saghir
,
M. Z.
,
2017
, “
Heat Development and Comparison Between the Steady and Pulsating Flows Through Aluminum Foam Heat Sink
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
3
), p.
031006
.
36.
Phelan
,
R.
,
Weaire
,
D.
, and
Brakke
,
K.
,
1995
, “
Computation of Equilibrium Foam Structures Using the Surface Evolver
,”
Exp. Math.
,
4
(
3
), pp.
181
192
.
37.
Alazmi
,
B.
, and
Vafai
,
K.
,
2000
, “
Analysis of Variants Within the Porous Media Transport Models
,”
ASME J. Heat Transfer
,
122
(
2
), pp.
303
326.
38.
Yu
,
Q.
,
Straatman
,
A. G.
, and
Thompson
,
B. E.
,
2006
, “
Carbon-Foam Finned Tubes in Air-Water Heat Exchangers
,”
J. Appl. Therm. Energy
,
26
(
2–3
), pp.
131
143
.
39.
Ohser
,
J.
,
Redenbach
,
C.
, and
Moghiseh
,
A.
,
2014
, “
The PPI Value of Open Foams and Its Estimation Using Image Analysis
,”
Int. J. Mater. Res.
,
105
(
7
), pp.
671
678
.
40.
Redenbach
,
C.
,
Ohser
,
J.
, and
Moghiseh
,
A.
,
2016
, “
Second-Order Characteristics of the Edge System of Random Tessellations and the PPI Value of Foams
,”
Methodol. Comput. Appl. Probab.
,
18
(
1
), pp.
59
79
.
41.
ERG Materials & Aerospace,
2011
, “The Basics of Duocel Foam,” ERG Materials & Aerospace, Oakland, CA, accessed Mar. 1, 2018, http://www.ergaerospace.com/Descriptors.htm
42.
Weinberger
,
C.
,
Vetter
,
S.
,
Tiemann
,
M.
, and
Wagner
,
T.
,
2016
, “
Assessment of the Density of (Meso)Porous Materials From Standard Volumetric Physisorption Data
,”
Microporous Mesoporous Mater.
,
223
(
15
), pp.
53
57
.
43.
Álvarez Hernández
,
Á. R. R.
,
2005
, “Combined Flow and Heat Transfer Characterization of Open Cell Aluminum Foams,” Master thesis, University of Puerto Rico, Mayaguez, PR.
44.
Ofuchia
,
K.
, and
Kuniia
,
D.
,
1965
, “
Heat-Transfer Characteristics of Packed Beds With Stagnant Fluids
,”
Int. J. Heat Mass Transfer
,
8
(
5
), pp.
749
757
.
45.
Hadleya
,
G. R.
,
1986
, “
Thermal Conductivity of Packed Metal Powders
,”
Int. J. Heat Mass Transfer
,
29
(
6
), pp.
909
920
.
46.
Lu
,
T. J.
,
Stone
,
H. A.
, and
Ashby
,
M. F.
,
1998
, “
Heat Transfer in Open-Cell Metal Foams
,”
Acta Mater.
,
46
(
10
), pp.
3619
3635
.
47.
Gibson
,
L. J.
,
Ashby
,
M. F.
, and
Harley
,
B. A.
,
2010
,
Cellular Materials in Nature and Medicine
,
Cambridge University Press
,
Cambridge, UK
.
48.
Shen
,
H.
,
Liu
,
X.
,
Yan
,
H.
,
Xie
,
G.
, and
Sunden
,
B.
,
2017
, “
Enhanced Thermal Performance of Internal Y-Shaped Bifurcation Microchannel Heat Sinks With Metal Foams
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
1
), p.
011001
.
49.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2000
, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
557
565
.
50.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2002
, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
1017
1031
.
51.
Boomsma
,
K.
, and
Poulikakos
,
D.
,
2001
, “
On the Effective Thermal Conductivity of a Three-Dimensionally Structured Fluid-Saturated Metal Foam
,”
Int. J. Heat Mass Transfer
,
44
(
4
), pp.
827
836
.
52.
Keyes
,
R. W.
,
1984
, “
Heat Transfer in Forced Convection Through Fins
,”
IEEE Trans. Electron Devices
,
31
(
9
), pp.
1218
1221
.
53.
Bejan
,
A.
, and
York
,
N.
, eds.,
2013
,
Convection Heat Transfer
,
2nd ed.
,
Wiley
,
Hoboken, NJ
.
54.
Bastawros
,
A. F.
,
Evans
,
A. G.
, and
Stone
,
H. A.
,
1998
,
Evaluation of Cellular Metal Heat Transfer Media
,
Harvard University
,
Cambridge, MA
.
55.
Cicala
,
G.
,
Cirillo
,
L.
,
Diana
,
A.
,
Manca
,
O.
, and
Nardini
,
S.
,
2016
, “
Experimental Evaluation of Fluid Dynamic and Thermal Behaviors in Compact Heat Exchanger With Aluminum Foam
,”
Energy Procedia
,
101
, pp.
1103
1110
.
56.
Lu
,
W.
,
Zhao
,
C. Y.
, and
Tassou
,
S. A.
,
2006
, “
Thermal Analysis on Metal-Foam Filled Heat Exchangers—Part I: Metal-Foam Filled Pipes
,”
Int. J. Heat Mass Transfer
,
49
(
15–16
), pp.
2751
2761
.
57.
Odabaee
,
M.
,
Hooman
,
K.
, and
Gurgenci
,
H.
,
2011
, “
Metal Foam Heat Exchangers for Heat Transfer Augmentation From a Cylinder in Cross-Flow
,”
Transp. Porous Media
,
86
(
3
), pp.
911
923
.
58.
Dukhan
,
N.
,
2006
, “
Correlations for the Pressure Drop for Flow Through Metal Foam
,”
Exp. Fluids
,
41
(
4
), pp.
665
672
.
59.
Jung
,
A.
,
Lach
,
E.
, and
Diebels
,
S.
,
2014
, “
New Hybrid Foam Materials for Impact Protection
,”
Int. J. Impact Eng.
,
64
, pp.
30
38
.
60.
Zhao
,
H.
, and
Gary
,
G.
,
1998
, “
Crushing Behaviour of Aluminum Honeycombs Under Impact Loading
,”
Int. J. Impact Eng.
,
21
(
10
), pp.
827
836
.
61.
Hu
,
H.
,
Weng
,
X.
,
Zhuang
,
D.
,
Ding
,
G.
,
Lai
,
Z.
, and
Xu
,
X.
,
2016
, “
Heat Transfer and Pressure Drop Characteristics of Wet Air Flow in Metal Foam Under Dehumidifying Conditions
,”
Appl. Therm. Eng.
,
93
(
25
), pp.
1124
1134
.
62.
Bai
,
W.
,
Yuan
,
X.
, and
Liu
,
X.
,
2017
, “
Numerical Investigation on the Performances of Automotive Thermoelectric Generator Employing Metal Foam
,”
Appl. Therm. Eng.
,
124
, pp.
178
184
.
63.
Seok
,
J.
,
Chun
,
K. M.
,
Song
,
S.
, and
Lee
,
J.
,
2014
, “
An Empirical Study of the Dry Soot Filtration Behavior of a Metal Foam Filter on a Particle Number Concentration Basis
,”
Energy
,
76
(
1
), pp.
949
957
.
64.
Mutlu
,
I.
,
2016
, “
Synthesis and Characterization of Ti–Co Alloy Foam for Biomedical Applications
,”
Trans. Nonferrous Met. Soc. China
,
26
(
1
), pp.
126
137
.
65.
Kalyanasundaram
,
V.
, and
Lewis
,
K.
,
2014
, “
A Function Based Approach for Product Integration
,”
ASME J. Mech. Des.
,
136
(
4
), p.
041002
.
66.
Goede
,
M.
,
Stehlin
,
M.
,
Rafflenbeu
,
L.
,
Kopp
,
G.
, and
Beeh
,
E.
,
2009
, “
Super Light Car—Lightweight Construction Thanks to a Multi-Material Design and Function Integration
,”
Eur. Transp. Res. Rev.
,
1
(
1
), pp.
5
10
.
67.
Messer
,
M.
,
Panchal
,
J. H.
,
Allen
,
J.
,
McDowell
,
D. L.
, and
Mistree
,
F.
,
2007
, “A Function-Based Approach for Integrated Design and Material and Product Concepts,”
ASME
Paper No. DETC2007-35743.
68.
Boothroyd
,
G.
, and
Dewhurst
,
P.
,
1983
, “Design for Assembly Handbook,”
University of Massachusetts
,
Amherst, MA
.
69.
Mahmood
,
S.
,
2013
, “
Empirical Study of Software Component Integration Process Activities
,”
IET Software
,
7
(
2
), pp.
65
75
.
70.
Zaghi
,
S.
,
Muscari
,
R.
, and
Mascio
,
A. D.
,
2016
, “
Assessment of Blockage Effects in Wind Tunnel Testing of Wind Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
154
, pp.
1
9
.
You do not currently have access to this content.