Forced convective flow boiling in a single microchannel with different channel heights was studied through a numerical simulation method to investigate bubble dynamics, two-phase flow patterns, and boiling heat transfer. The momentum and energy equations were solved using a finite volume (FV) numerical method, while the liquid–vapor interface of a bubble is captured using the volume of fluid (VOF) technique. The effects of different constant wall heat fluxes and different channel heights on the boiling mechanisms were investigated. The effects of liquid velocity on the bubble departure diameter were also analyzed. The predicted bubble shapes and distribution profiles together with two-phase flow patterns are also provided.

References

References
1.
Jiang
,
L.
,
Wong
,
M.
, and
Zohar
,
Y.
,
2001
, “
Forced Convection Boiling in a Microchannel Heat Sinks
,”
J. Microelectromech. Syst.
,
10
, pp.
80
87
.
2.
Wu
,
H. Y.
,
Cheng
,
P.
, and
Wang
,
H.
,
2006
, “
Pressure Drop and Flow Boiling Instabilities in Silicon Microchannel Heat Sinks
,”
J. Micromech. Microeng.
,
16
, pp.
2138
2146
.
3.
Hsu
,
Y. Y.
,
1962
, “
On the Size Range of Active Nucleation Cavities on a Heating Surface
,”
ASME J. Heat Transfer
,
84
(
3
), pp.
207
216
.
4.
Moore
,
F. D.
, and
Mesler
,
R. B.
,
1961
, “
The Measurement of Rapid Surface Temperature Fluctuations During Nucleate Boiling of Water
,”
AIChE J.
,
7
, pp.
620
624
.
5.
Hapke
,
I.
,
Boye
,
H.
, and
Schmidt
,
J.
,
2000
, “
Onset of Nucleate Boiling in Minichannels
,”
Int. J. Therm. Sci.
,
39
, pp.
505
513
.
6.
Qu
,
W.
, and
Mudawar
,
I.
,
2002
, “
Prediction and Measurement of Incipient Boiling Heat Flux in Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
45
(
19
), pp.
3933
3945
.
7.
Wu
,
H. Y.
, and
Cheng
,
P.
,
2003
, “
Visualization and Measurements of Periodic Boiling in Silicon Microchannels
,”
Int. J. Heat Mass Transfer
,
46
(
14
), pp.
2603
2614
.
8.
Li
,
J.
, and
Peterson
,
G. P.
,
2005
, “
Microscale Heterogeneous Boiling on Smooth Surfaces—From Bubble Nucleation to Bubble Dynamics
,”
Int. J. Heat Mass Transfer
,
48
(
21–22
), pp.
4316
4332
.
9.
Kuo
,
C. J.
,
Kosar
,
A.
,
Peles
,
Y.
,
Virost
,
S.
,
Mishra
,
C.
, and
Jensen
,
M. K.
,
2006
, “
Bubble Dynamics During Boiling in Enhanced Surface Microchannels
,”
J. Microelectromech. Syst.
,
15
, pp.
1514
1527
.
10.
Sato
,
T.
, and
Matsumura
,
H.
,
1963
, “
On the Conditions of Incipient Subcooled Boiling and Forced Convection
,”
Bull. Jpn. Sci. Mech. Eng.
,
7
(
26
), pp.
392
398
.
11.
Bergles
,
A. E.
, and
Rohsenow
,
W. M.
,
1964
, “
The Determination of Forced-Convection Surface-Boiling Heat Transfer
,”
ASME J. Heat Transfer
,
86
, pp.
365
372
.
12.
Hino
,
R.
, and
Ueda
,
T.
,
1985
, “
Studies on Heat Transfer and Flow Characteristics in Subcooled Flow Boiling—Part 1: Boiling Characteristics
,”
Int. J. Multiphase Flow
,
11
, pp.
269
281
.
13.
Collier
,
J. G.
, and
Thome
,
T. R.
,
1994
,
Convective Boiling and Condensation
,
3rd ed.
,
Oxford University Press
,
Oxford, UK
.
14.
Davis
,
E. J.
, and
Anderson
,
G. H.
,
1966
, “
The Incipience of Nucleate Boiling in Forced Convection Flow
,”
AIChE J
,
12
, pp.
774
780
.
15.
Kandlikar
,
S. G.
,
Mizo
,
V.
,
Cartwright
,
M.
, and
Ikenze
,
E.
,
1997
, “
Bubble Nucleation and Growth Characteristics in Subcooled Flow Boiling of Water
,”
National Heat Transfer Conference
, Baltimore, MD, Aug. 8–12, Paper No. HTD-342.
16.
Celata
,
G. P.
,
Cumo
,
M.
, and
Mariani
,
A.
,
1997
, “
Experimental Evaluation of the Onset of Subcooled Flow Boiling at High Liquid Velocity and Subcooling
,”
Int. J. Heat Mass Transfer
,
40
(
14
), pp.
2879
2885
.
17.
Basu
,
N.
,
Warrier
,
G. R.
, and
Dhir
,
V. K.
,
2002
, “
Onset of Nucleate Boiling and Active Nucleation Site Density During Subcooled Flow Boiling
,”
ASME J. Heat Transfer
,
124
(
4
), pp.
717
728
.
18.
Ghiaasiaan
,
S. M.
, and
Chedester
,
R. C.
,
2002
, “
Boiling Incipience in Microchannels
,”
Int. J. Heat Mass Transfer
,
45
, pp.
4599
4606
.
19.
Li
,
J.
, and
Cheng
,
P.
,
2004
, “
Bubble Cavitation in a Microchannel
,”
Int. J. Heat Mass Transfer
,
47
(
12–13
), pp.
2689
2698
.
20.
Lee
,
P. C.
,
Tseng
,
F. G.
, and
Pan
,
C.
,
2004
, “
Bubble Dynamics in Microchannels—Part I: Single Microchannel
,”
Int. J. Heat Mass Transfer
,
47
(
25
), pp.
5575
5589.
21.
Li
,
H. Y.
,
Tseng
,
F. G.
, and
Pan
,
C.
,
2004
, “
Bubble Dynamics in Microchannels—Part II: Two Parallel Microchannels
,”
Int. J. Heat Mass Transfer
,
47
(
25
), pp.
5591
5601
.
22.
Liu
,
D.
,
Lee
,
P. S.
, and
Garimella
,
S. V.
,
2005
, “
Prediction of the Onset of Nucleate Boiling in Microchannel Flow
,”
Int. J. Heat Mass Transfer
,
48
, pp.
5134
5149
.
23.
Cole
,
R.
, and
Rohsenow
,
W. M.
,
1969
, “
Correlation of Bubble Departure Diameters for Boiling of Saturated Liquids
,”
AIChE Chem. Eng. Prog. Symp. Ser.
,
65
, pp.
211
213
.
24.
Kocamustafaogullari
,
G.
, and
Ishii
,
M.
,
1983
, “
Interfacial Area and Nucleation Site Density in Boiling Systems
,”
Int. J. Heat Mass Transfer
,
26
, pp.
1377
1387
.
25.
Gorenflo
,
D.
,
Knabe
,
V.
, and
Bieling
,
V.
,
1986
, “
Bubble Density on Surfaces With Nucleate Boiling—It's Influence on Heat Transfer and Burnout Heat Fluxes at Elevated Saturation Pressures
,”
Eighth International Heat Transfer Conference, San Francisco, CA, Aug. 17–22,
pp.
1995
2000
.
26.
Peebles
,
F. N.
, and
Garber
,
H. J.
,
1953
, “
Studies on Motion of Gas Bubbles in Liquids
,”
Chem. Eng. Prog.
,
49
, pp.
88
97
.
27.
Zuber
,
N.
,
1963
, “
Nucleate Boiling—The Region of Isolated Bubbles—Similarity With Natural Convection
,”
Int. J. Heat Mass Transfer
,
6
, pp.
53
65
.
28.
Malenkov
,
I. G.
,
1971
, “
Detachment Frequency as a Function of Size of Vapor Bubbles
,”
J. Eng. Phys.
,
20
(
6
), pp.
704
708
.https://link.springer.com/content/pdf/10.1007%2FBF01122590.pdf
29.
Kennedy
,
J. E.
,
Roach
,
G. M.
,
Dowling
,
M. F.
,
Abdel-Khalik
,
S. I.
,
Ghiaasiaan
,
S. M.
,
Jester
,
S. M.
, and
Quershi
,
Z. H.
,
2000
, “
The Onset of Flow Instability in Uniformly Heated Horizontal Microchannels
,”
ASME J. Heat Transfer
,
122
(
1
), pp.
118
125
.
30.
Dhir
,
V. K.
,
1998
, “
Boiling Heat Transfer
,”
Annu. Rev. Fluid Mech.
,
30
, pp.
365
401
.
31.
Kandlikar
,
S. G.
,
2002
, “
Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels
,”
Exp. Therm. Fluid Sci.
,
26
(
2–4
), pp.
389
407
.
32.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing
,
Washington, DC
.
33.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
, pp.
335
354
.
34.
ANSYS, 2018, “ANSYS Fluent,” ANSYS, Canonsburg, PA, acessed Jan. 27, 2018, https://www.ansys.com/Products/Fluids/ANSYS-Fluent
35.
Rider
,
W. J.
, and
Kothe
,
D. B.
,
1998
, “
Reconstructing Volume Tracking
,”
J. Comput. Phys.
,
141
, pp.
112
152
.
36.
Welch
,
S. W.
, and
Wilson
,
J.
,
2000
, “
A Volume of Fluid Based Method for Fluid Flows With Phase Change
,”
J. Comput. Phys.
,
160
(
2
), pp.
662
682
.
37.
Kandlikar
,
S. G.
,
2004
, “
Heat Transfer Mechanisms During Flow Boiling in Microchannels
,”
ASME J. Heat Transfer
,
126
, pp.
8
16
.
38.
Kandlikar
,
S. G.
,
2006
, “
Single-Phase Liquid Flow in Minichannels and Microchannels
,”
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier
,
Oxford, UK
, pp.
87
136
.
39.
Lee
,
W. H.
,
1979
, “A Pressure Iteration Scheme for Two-Phase Flow Modeling,” Los Alamos National Laboratory, Los Alamos, NM, Technical Report No. LA-UR-79-975.
40.
Kew
,
P. A.
, and
Cornwell
,
K.
,
1997
, “
Correlations for the Prediction of Boiling Heat Transfer in Small-Diameter Channels
,”
Appl. Therm. Eng.
,
17
(
8–10
), pp.
705
715
.
41.
Wang
,
G.
,
Cheng
,
P.
, and
Bergles
,
A. E.
,
2008
, “
Effects of Inlet/Outlet Configurations on Flow Boiling Instability in Parallel Microchannels
,”
Int. J. Heat Mass Transfer
,
51
, pp.
2267
2281
.
42.
Qu
,
W.
, and
Mudawar
,
I.
,
2004
, “
Transport Phenomena in Two-Phase Micro-Channel Heat Sinks
,”
ASME J. Electron. Packag.
,
126
, pp.
213
224
.
43.
Ravigururajan
,
T. S.
,
1998
, “
Impact of Channel Geometry on Two-Phase Flow Heat Transfer Characteristics of Refrigerants in Microchannel Heat Exchangers
,”
ASME J. Heat Transfer
,
120
, pp.
485
491
.
44.
Kandlikar
,
S. G.
, and
Balasubramanian
,
P.
,
2004
, “
An Extension of the Flow Boiling Correlation to Transition, Laminar and Deep Laminar Flows in Minichannels and Microchannels
,”
Heat Transfer Eng.
,
25
, pp.
86
93
.
45.
Lee
,
J.
, and
Mudawar
,
I.
,
2005
, “
Two-Phase Flow in High-Heat-Flux Micro-Channel Heat Sink for Refrigeration Cooling Applications—Part II: Heat Transfer Characteristics
,”
Int. J. Heat Mass Transfer
,
48
, pp.
941
955
.
46.
Diaz
,
M. C.
, and
Schmidt
,
J.
,
2007
, “
Experimental Investigation of Transient Boiling Heat Transfer in Microchannels
,”
Int. J. Heat Fluid Flow
,
28
, pp.
95
102
.
47.
Jacobi
,
A. M.
, and
Thome
,
J. R.
,
2002
, “
Heat Transfer Model for Evaporation of Elongated Bubble Flows in Microchannels
,”
ASME J. Heat Transfer
,
124
(
6
), pp.
1131
1136
.
48.
Thome
,
J. R.
,
Dupont
,
V.
, and
Jacobi
,
A. M.
,
2004
, “
Heat Transfer Model for Evaporation in Microchannels—Part I: Presentation of the Model
,”
Int. J. Heat Mass Transfer
,
47
(
14–16
), pp.
3375
3385
.
49.
Li
,
W.
, and
Wu
,
Z.
,
2010
, “
A General Correlation for Evaporative Heat Transfer in Micro/Mini-Channels
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
1778
1787
.
You do not currently have access to this content.