This paper explores the use of a self-adaptive multipopulation elitist (SAMPE) Jaya algorithm for the economic optimization of shell-and-tube heat exchanger (STHE) design. Three different optimization problems of STHE are considered in this work. The same problems were earlier attempted by other researchers using genetic algorithm (GA), particle swarm optimization (PSO) algorithm, biogeography-based optimization (BBO), imperialist competitive algorithm (ICA), artificial bee colony (ABC), cuckoo-search algorithm (CSA), intelligence-tuned harmony search (ITHS), and cohort intelligence (CI) algorithm. The Jaya algorithm is a newly developed algorithm and it does not have any algorithmic-specific parameters to be tuned except the common control parameters of number of iterations and population size. The search mechanism of the Jaya algorithm is upgraded in this paper by using the multipopulation search scheme with the elitism. The SAMPE-Jaya algorithm is proposed in this paper to optimize the setup cost and operational cost of STHEs simultaneously. The performance of the proposed SAPME-Jaya algorithm is tested on four well-known constrained, ten unconstrained standard benchmark problems, and three STHE design optimization problems. The results of computational experiments proved the superiority of the proposed method over the latest reported methods used for the optimization of the same problems.

References

References
1.
Yang
,
J.
,
Oh
,
S. R.
, and
Liu
,
W.
,
2014
, “
Optimization of Shell-and-Tube Heat Exchangers Using a General Design Approach Motivated by Constructal Theory
,”
Int. J. Heat Mass Transfer
,
77
, pp.
1144
1154
.
2.
Yang
,
J.
,
Oh
,
S. R.
,
Liu
,
W.
, and
Jacobi
,
A. M.
,
2014
, “
Optimization of Shell-and-Tube Heat Exchangers Conforming to TEMA Standards With General Design Approach Motivated by Constructal Theory
,”
Energy Convers. Manage.
,
78
, pp.
468
476
.
3.
Selbas
,
O.
,
Kızılkan
,
M.
, and
Reppich
,
A.
,
2006
, “
New Design Approach for Shell-and-Tube Heat Exchangers Using Genetic Algorithms From Economic Point of View
,”
Chem. Eng. Process.: Process Intensif.
,
45
(4), pp.
268
275
.
4.
Selleri
,
T.
,
Najafi
,
B.
,
Rinaldi
,
F.
, and
Colombo
,
G.
,
2013
, “
Mathematical Modeling and Multi-Objective Optimization of a Mini-Channel Heat Exchanger Via Genetic Algorithm
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
3
), p.
031013
.
5.
Allen, B., Savard-Goguen, M., and Gosselin, L. 2009, “Optimizing Heat Exchanger Networks With Genetic Algorithms for Designing Each Heat Exchanger Including Condensers,”
Appl. Therm. Eng.
, 29(16), pp. 3437–3444.
6.
Fettaka
,
S.
,
Thibault
,
J.
, and
Gupta
,
Y.
,
2013
, “
Design of Shell-and-Tube Heat Exchangers Using Multiobjective Optimization
,”
Int. J. Heat Mass Transfer
,
60
, pp.
343
354
.
7.
Ponce-Ortega
,
J. M.
,
Serna-Gonzalez
,
M.
, and
Jimenez-Gutierrez
,
A.
,
2009
, “
Use of Genetic Algorithms for the Optimal Design of Shell-and-Tube Heat Exchangers
,”
Appl. Therm. Eng.
,
29
(2–3), pp.
203
209
.
8.
Luna–Abad
,
J. P.
, and
Alhama
,
F.
,
2013
, “
Design and Optimization of Composite Rectangular Fins Using the Relative Inverse Thermal Admittance
,”
ASME J. Heat Transfer
,
135
(
8
), p.
084504
.
9.
Amini
,
M.
, and
Bazargan
,
M.
, 2014, “
Two Objective Optimization in Shell-and-Tube Heat Exchangers Using Genetic Algorithm
,”
Appl. Therm. Eng.
,
69
(1–2), pp.
278
285
.
10.
Daroczy
,
L.
,
Janiga
,
G.
, and
Thevenin
,
D.
,
2014
, “
Systematic Analysis of the Heat Exchanger Arrangement Problem Using Multi-Objective Genetic Optimization
,”
Energy
,
65
, pp.
364
373
.
11.
Khosravi
,
R.
,
Khosravi
,
A.
,
Nahavandi
,
S.
, and
Hajabdollah
,
H.
,
2015
, “
Effectiveness of Evolutionary Algorithms for Optimization of Heat Exchangers
,”
Energy Convers. Manage.
,
89
, pp.
281
288
.
12.
Caputo
,
A. C.
,
Pelagagge
,
P. M.
, and
Salini
,
P.
,
2008
, “
Heat Exchanger Design Based on Economic Optimization
,”
Appl. Therm. Eng.
,
28
(10), pp.
1151
1159
.
13.
Sanaye
,
S.
, and
Hajabdollahi
,
H.
,
2010
, “
Multi-Objective Optimization of Shell and Tube Heat Exchangers
,”
Appl. Therm. Eng.
,
30
(14–15), pp.
1937
1945
.
14.
Wong
,
J. Y. Q.
,
Sharma
,
S.
, and
Rangaiah
,
G. P.
,
2016
, “
Design of Shell-and-Tube Heat Exchangers for Multiple Objectives Using Elitist Non-Dominated Sorting Genetic Algorithm With Termination Criteria
,”
Appl. Therm. Eng.
,
93
, pp.
888
899
.
15.
Sadeghzadeh
,
H.
,
Ehyaei
,
M. A.
, and
Rosen
,
M. A.
,
2015
, “
Techno-Economic Optimization of a Shell and Tube Heat Exchanger by Genetic and Particle Swarm Algorithms
,”
Energy Convers. Manage.
,
93
, pp.
84
91
.
16.
Ravagnani
,
M. A. S. S.
,
Silva
,
A. P.
,
Biscaiac
,
E. C.
, and
Caballero
,
J. A.
,
2009
, “
Optimal Design of Shell-and-Tube Heat Exchangers Using Particle Swarm Optimization
,”
Ind. Eng. Chem. Res.
,
48
(
6
), pp.
2927
2935
.
17.
Patel
,
V. K.
, and
Rao
,
R. V.
,
2010
, “
Design Optimization of Shell-and-Tube Heat Exchanger Using Particle Swarm Optimization Technique
,”
Appl. Therm. Eng.
,
30
(11–12), pp.
1417
1425
.
18.
Mariani
,
V. C.
,
Duck
,
A.
,
Guerra
,
F. A.
,
Coelho
,
L. S.
, and
Rao
,
R. V.
,
2012
, “
Chaotic Quantum-Behaved Particle Swarm Approach Applied to Optimization of Heat Exchangers
,”
Appl. Therm. Eng.
,
42
, pp.
119
128
.
19.
Sahin
,
A. S.
,
Kılıç
,
B.
, and
Kılıç
,
U.
,
2011
, “
Design and Economic Optimization of Shell and Tube Heat Exchangers Using Artificial Bee Colony (ABC) Algorithm
,”
Energy Convers. Manage.
,
52
(11), pp.
3356
3362
.
20.
Hadidi
,
A.
,
Hadidi
,
M.
, and
Nazari
,
A.
,
2013
, “
A New Design Approach for Shell-and-Tube Heat Exchangers Using Imperialist Competitive Algorithm (ICA) From Economic Point of View
,”
Energy Convers. Manage.
,
67
, pp.
66
74
.
21.
Hadidi
,
A.
, and
Nazari
,
A.
,
2013
, “
Design and Economic Optimization of Shell-and-Tube Heat Exchangers Using Biogeography-Based (BBO) Algorithm
,”
Appl. Therm. Eng.
,
51
(1–2), pp.
1263
1272
.
22.
Asadi
,
M.
,
Song
,
Y.
,
Sunden
,
B.
, and
Xie
,
G.
,
2014
, “
Economic Optimization Design of Shell-and-Tube Heat Exchangers by a Cuckoo-Search-Algorithm
,”
Appl. Therm. Eng.
,
73
(1), pp.
1032
1040
.
23.
Fesanghary
,
M.
,
Damangir
,
E.
, and
Soleimani
,
I.
,
2009
, “
Design Optimization of Shell and Tube Heat Exchangers Using Global Sensitivity Analysis and Harmony Search Algorithm
,”
Appl. Therm. Eng.
,
29
(5–6), pp.
1026
1031
.
24.
Turgut
,
O. E.
,
Turgut
,
M. S.
, and
Coban
,
M. T.
,
2014
, “
Design and Economic Investigation of Shell and Tube Heat Exchangers Using Improved Intelligent Tuned Harmony Search Algorithm
,”
Ain Shams Eng. J.
,
5
(4), pp.
1215
1231
.
25.
Mohanty
,
D. K.
,
2016
, “
Application of Firefly Algorithm for Design Optimization of a Shell and Tube Heat Exchanger From Economic Point of View
,”
Int. J. Therm. Sci.
,
102
, pp.
228
238
.
26.
Rao
,
R. V.
, and
Patel
,
V. K.
,
2013
, “
Multi-Objective Optimization of Heat Exchangers Using a Modified Teaching–Learning-Based Optimization Algorithm
,”
Appl. Math. Modell.
,
37
(3), pp.
1147
1162
.
27.
Ayala
,
H. V. H.
,
Keller
,
P.
,
Morais
,
M. D. F.
,
Mariani
,
V. C.
,
Coelho
,
L. D. S.
, and
Rao
,
R. V.
,
2016
, “
Design of Heat Exchangers Using a Novel Multiobjective Free Search Differential Evolution Paradigm
,”
Appl. Therm. Eng.
,
94
, pp.
170
177
.
28.
Babu
,
B. V.
, and
Munawar
,
S. A.
,
2007
, “
Differential Evolution Strategies for Optimal Design Shell and Tube Heat Exchangers
,”
Chem. Eng. Sci.
,
62
(14), pp.
3720
3739
.
29.
Rao
,
R. V.
,
2016
,
Teaching Learning Based Optimization Algorithm and Its Engineering Applications
,
Springer Verlag
,
London
.
30.
Rao
,
R. V.
, and
Patel
,
V. K.
,
2011
, “
Optimization of Mechanical Draft Counter Flow Wet-Cooling Tower Using Artificial Bee Colony Algorithm
,”
Energy Convers. Manage.
,
52
(
7
), pp.
2611
2622
.
31.
Rao
,
R. V.
,
2016
, “
Jaya: A Simple and New Optimization Algorithm for Solving Constrained and Unconstrained Optimization Problems
,”
Int. J. Ind. Eng. Comput.
,
7
(
1
), pp.
19
34
.
32.
Cruz
,
C.
,
González
,
J. R.
, and
Pelta
,
D. A.
,
2011
, “
Optimization in Dynamic Environments: A Survey on Problems, Methods and Measures
,”
Soft Comput.
,
15
(
7
), pp.
1427
1448
.
33.
Branke
,
J.
,
Kaußler
,
T.
,
Schmidt
,
C.
, and
Schmeck
,
H.
,
2000
, “
A Multi-Population Approach to Dynamic Optimization Problems
,”
Adaptive Computing in Design and Manufacturing
,
Springer
, London, pp.
299
308
.
34.
Rao, R. V., and Saroj, A., 2017, “A Self-Adaptive Multi-Population Based Jaya Algorithm for Engineering Optimization,”
Swarm Evol. Compt.,
37, pp. 1–26.
35.
Chen
,
D.
, and
Zhao
,
C.
,
2009
, “
Particle Swarm Optimization With Adaptive Population Size and Its Application
,”
Appl. Soft Comput.
,
9
(1), pp.
39
48
.
36.
Khalfe
,
N. M.
,
Lahiri
,
S. K.
, and
Wadhwa
,
S. K.
,
2011
, “
Simulated Annealing Technique to Design Minimum Cost Exchanger
,”
CICEQ
,
17
(
4
), pp.
409
427
.
37.
Lahiri
,
S. K.
,
Khalfe
,
N. M.
, and
Wadhwa
,
S. K.
,
2012
, “
Particle Swarm Optimization Technique for the Optimal Design of Shell and Tube Heat Exchanger
,”
Chem. Prod. Process Model.
,
7
(
1
), pp.
289
291
.
38.
Towler
,
G.
, and
Sinnott
,
R.
,
2013
,
Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design
,
2nd ed.
,
Elsevier
,
Boston, MA
.
39.
Kern
,
D. Q.
,
1950
,
Process Heat Transfer
,
McGraw-Hill Book Company
,
Tokyo, Japan
.
40.
Ngo
,
T. T.
,
Sadollahb
,
A.
, and
Kim
,
J. H.
,
2016
, “
A Cooperative Particle Swarm Optimizer With Stochastic Movements for Computationally Expensive Numerical Optimization Problems
,”
J. Comput. Sci.
,
13
, pp.
68
82
.
41.
Dhaval
,
S. V.
,
Kulkarni
,
A. J.
,
Shastri
,
A.
, and
Kale
,
I. R.
,
2016
, “
Design and Economic Optimization of Shell-and-Tube Heat Exchanger Using Cohort Intelligence Algorithm
,”
Neural Comput. Appl.
, epub.
You do not currently have access to this content.