A clamp-on measurement system for flexible and accurate fluid temperature measurements for turbulent flows with Reynolds numbers higher than 30,000 is presented in this paper. This noninvasive system can be deployed without interference with the fluid flow while delivering the high accuracies necessary for performance and acceptance testing for power plants in terms of measurement accuracy and position. The system is experimentally validated in the fluid flow of a solar thermal parabolic trough collector test bench, equipped with built-in sensors as reference. Its applicability under industrial conditions is demonstrated at the 50 MWel AndaSol-3 parabolic trough solar power plant in Spain. A function based on large experimental data correcting the temperature gradient between the measured clamp-on sensor and actual fluid temperature is developed, achieving an uncertainty below ±0.7 K (2σ) for fluid temperatures up to 400 °C. In addition, the experimental results are used to validate a numerical model. Based on the results of this model, a general dimensionless correction function for a wider range of application scenarios is derived. The clamp-on system, together with the dimensionless correction function, supports numerous combinations of fluids, pipe materials, insulations, geometries, and operation conditions and should be useful in a variety of industrial applications of the power and chemical industry where temporal noninvasive fluid temperature measurement is needed with good accuracy. The comparison of the general dimensionless correction function with measurement data indicates a measurement uncertainty below 1 K (2σ).

References

References
1.
Beck
,
J. V.
,
Blackwell
,
B.
, and
Haji-Sheikh
,
A.
,
1996
, “
Comparison of Some Inverse Heat Conduction Methods Using Experimental Data
,”
Int. J. Heat Mass Transfer
,
39
(17), pp.
3649
3657
.
2.
Chen
,
W.-L.
,
Yang
,
Y.-C.
,
Chang
,
W. J.
, and
Lee
,
H.-L.
,
2008
, “
Inverse Problem of Estimating Transient Heat Transfer Rate on External Wall of Forced Convection Pipe
,”
Energy Convers. Manage.
,
49
(8), pp.
2117
2123
.
3.
Lu
,
T.
,
Liu
,
B.
, and
Jiang
,
P. X.
,
2011
, “
Inverse Estimation of the Inner Wall Temperature Fluctuations in a Pipe Elbow
,”
Appl. Therm. Eng.
,
31
(11–12), pp.
1976
1982
.
4.
Gorman
,
J. M.
,
Sparrow
,
E. M.
, and
Abraham
,
J. P.
,
2013
, “
Differences Between Measured Pipe Wall Surface Temperatures and Internal Fluid Temperatures
,”
Case Stud. Therm. Eng.
,
1
(
1
), pp.
13
16
.
5.
Cai
,
W.
,
Yang
,
Z.-Y.
,
Xu
,
W.-H.
, and
Dai
,
M.-Q.
,
2014
, “
A Non-Intrusive Oil Temperature Measurement Method of Hydraulic System
,”
Rev. Sci. Instrum.
,
85
(12), p. 125105.
6.
Fernández-García
,
A.
,
Zarza
,
E.
,
Valenzuela
,
L.
, and
Pérez
,
M.
,
2010
, “
Parabolic-Trough Solar Collectors and Their Applications
,”
Renewable Sustainable Energy Rev.
,
14
(
7
), pp.
1695
1721
.
7.
Janotte
,
N.
,
2012
, “
Requirements for Representative Acceptance Tests for the Prediction of the Annual Yield of Parabolic Trough Solar Fields
,” Ph.D. dissertation, RWTH Aachen University, Aachen, Germany.
8.
Janotte
,
N.
,
Lüpfert
,
E.
,
Pitz-Paal
,
R.
,
Pottler
,
K.
,
Eck
,
M.
,
Zarza
,
E.
, and
Riffelmann
,
K.-J.
,
2010
, “
Influence of Measurement Equipment on the Uncertainty of Performance Data From Test Loops for Concentrating Solar Collectors
,”
ASME J. Sol. Energy Eng.
,
132
(
3
), p.
031003
.
9.
Geyer
,
M.
,
Lüpfert
,
E.
,
Osuna
,
R.
,
Esteban
,
A.
,
Schiel
,
W.
,
Schweitzer
,
A.
,
Zarza
,
E.
,
Nava
,
P.
,
Langenkamp
,
J.
, and
Mandelberg
,
E.
,
2002
, “
EUROTROUGH—Parabolic Trough Collector Developed for Cost Efficient Solar Power Generation
,”
11th SolarPACES International Symposium on Concentrated Solar Power and Chemical Energy Technologies
, Zurich, Switzerland, Sept. 4–8, pp. 1–7.http://www.fika.org/jb/resources/EuroTrough.pdf
10.
Abraham
,
P.
,
Sparrow
,
E. M.
, and
Minkowycz
,
W. J.
,
2011
, “
Internal-Flow Nusselt Numbers for the Low-Reynolds-Number End of the Laminar-to-Turbulent Transition Regime
,”
Int. J. Heat Mass Transfer
,
54
(1–3), pp.
584
588
.
11.
Bentley
,
J. P.
,
1984
, “
Temperature Sensor Characteristics and Measurement System Design
,”
J. Phys. E
,
17
(6), pp. 430–439.
12.
Heller
,
P.
,
Meyer-Grünefeldt
,
M.
,
Ebert
,
M.
,
Janotte
,
N.
,
Nouri
,
B.
,
Pottler
,
K.
,
Prahl
,
C.
,
Reinalter
,
W.
, and
Zarza
,
E.
,
2011
, “
KONTAS—A Rotary Test Bench for Standardized Qualification of Parabolic Trough Components
,”
17th SolarPACES International Symposium on Concentrated Solar Power and Chemical Energy Technologies
, Granada, Spain, Sept. 20–23.https://www.researchgate.net/profile/Klaus_Pottler/publication/236033033_KONTAS_-_A_Rotary_Test_Bench_for_Standardized_Qualifiacation_of_Parabolic_Trough_Components/links/00b49515e9d8d9e058000000/KONTAS-A-Rotary-Test-Bench-for-Standardized-Qualifiacation-of-Parabolic-Trough-Components.pdf
13.
Gam
,
K. S.
,
Yang
,
I.
, and
Kim
,
Y.-G.
,
2011
, “
Thermal Hysteresis in Thin-Film Platinum Resistance Thermometers
,”
Int. J. Thermophys.
,
32
(11–12), pp.
2388
2396
.
14.
Zvizdić
,
D.
, and
Šestan
,
D.
,
2013
, “
Hysteresis of Thin Film IPRTs in the Range 100 °C to 600 °C
,”
AIP Conf. Proc.
,
1552
, p. 445.
15.
Hashemian
,
H. M.
,
1994
, “
Aging Characteristics of Nuclear Plant RTDs and Pressure Transmitters
,”
Fourth International Topical Meeting on Nuclear Thermal Hydraulics, Operations and Safety
, Taipei, Taiwan, Apr. 5–8, pp. 32-C-1–32-C-6.https://inis.iaea.org/search/search.aspx?orig_q=RN:35097857
16.
DAkkS
,
2003
, “
German accreditation body DAkkS, DAkkS-DKD-R 5-1 Richtlinie Kalibrierung von Widerstandsthermometern (Guidline Calibration of Resistance Thermometers)
,” DAkkS, Braunschweig, Germany.
17.
DAkkS
,
2010
, “
German accreditation body DAkkS, DAkkS-DKD-R 5-4 Richtlinie Kalibrierung von Temeratur-Blockkalibratoren (Guidline Calibration of Temperature Block Calibrators)
,” DAkkS, Braunschweig, Germany.
18.
Curtis
,
D. J.
,
1982
, “
Thermal Hysteresis and Stress Effects in Platinum Resistance Thermometers
,”
Temperature, Its Measurement and Control Science and Industry
, Vol.
5
, American Institute of Physics, New York, pp.
803
812
.
19.
Gliah
,
O.
,
Kruczek
,
B.
,
Etemad
,
S. G.
, and
Thibault
,
J.
,
2011
, “
The Effective Sky Temperature: An Enigmatic Concept
,”
Heat Mass Transfer
,
47
(
9
), pp.
1171
1180
.
20.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(2), pp.
359
368
.https://www.bibsonomy.org/bibtex/2e5f300b68e4939294c32226ddd6a5a71/thorade
21.
Gnielinski
,
V.
,
1975
, “
Berechnung mittlerer Wärme- und Stoffübergangskoeffizienten an laminar und turbulent überströmten Einzelkörpern mit Hilfe einer einheitlichen Gleichung
,”
Forsch. Ingenieurwes.
,
41
(
5
), pp.
145
153
.
22.
Sonin
,
A. A.
,
2001
,
The Physical Basis of Dimensional Analysis
,
2nd ed.
,
MIT
,
Cambridge, MA
.
23.
Buckingham
,
E.
,
1914
, “
On Physically Similar Systems; Illustrations of the Use of Dimensional Equations
,”
Phys. Rev.
,
4
(4), pp.
345
376
.
24.
Mckay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
2000
, “
Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
42
(
1
), pp.
55
61
.
25.
Powell
,
M. J. D.
,
2009
, “
The BOBYQA Algorithm for Bound Constrained Optimization Without Derivatives
,” Centre for Mathematical Sciences, Cambridge, UK.
You do not currently have access to this content.