In the present work, a steady-state, finite difference-based computer model of heat transfer during production of lime in a rotary kiln has been developed. The model simulates calcination reaction in the solid bed region of the rotary kiln along with turbulent convection of gas, radiation heat exchange among hot gas, refractory wall and the solid surface, and conduction in the refractory wall. The solids flow countercurrent to the gas. The kiln is divided into axial segments of equal length. The mass and energy balances of the solid and gas in an axial segment are used to obtain solids and gas temperature at the exit of that segment. Thus, a marching type of solution proceeding from the solids inlet to solids outlet arises. To model the calcination of limestone, shrinking core model with surface reaction rate control has been used. The output data consist of the refractory wall temperature distributions, axial solids and gas temperature distributions, axial percent calcination profile, and kiln length. The kiln length predicted by the present model is 5.74 m as compared to 5.5 m of the pilot kiln used in the experimental study of Watkinson and Brimacombe (1982, Watkinson, A.P. and Brimacombe, J. K., “Limestone Calcination in a Rotary Kiln,” Metallurgical Transactions B, Vol. 13B, pp. 369–378). The other outputs have been also satisfactorily validated with the aforementioned experimental results. A detailed parametric study lent a good physical insight into the lime making process and the kiln wall temperature distributions.

References

References
1.
Boeteng
,
A. A.
,
2008
,
Rotary Kilns
,
Butterworth-Heinemann
,
Burlington, MA
.
2.
Watkinson
,
A. P.
, and
Brimacombe
,
J. K.
,
1982
, “
Limestone Calcination in a Rotary Kiln
,”
Metall. Trans. B
,
13
(
3
), pp.
369
378
.
3.
Watkinson
,
A. P.
, and
Brimacombe
,
J. K.
,
1983
, “
Oxygen Enrichment in Rotary Lime Kilns
,”
Can. J. Chem. Eng.
,
61
(
6
), pp.
842
849
.
4.
Georgallis
,
M.
,
Nowak
,
P.
,
Salcudean
,
M.
, and
Gartshore
,
I. S.
,
2005
, “
Modelling the Rotary Lime Kiln
,”
Can. J. Chem. Eng.
,
83
(
2
), pp.
212
223
.
5.
Mikulcic
,
H.
,
Berg
,
E. V.
,
Vujanovic
,
M.
,
Priesching
,
P.
,
Perkovic
,
L.
,
Tatschl
,
R.
, and
Duic
,
N.
,
2012
, “
Numerical Modelling of Calcination Reaction Mechanism for Cement Production
,”
Chem. Eng. Sci.
,
69
(1), pp.
607
615
.
6.
Mintus
,
F.
,
Hamel
,
S.
, and
Krumm
,
W.
,
2006
, “
Wet Process Rotary Cement Kilns: Modeling and Simulation
,”
Clean Technol. Environ. Policy
,
8
(
2
), pp.
112
122
.
7.
Spang
,
H. A.
,
1972
, “
A Dynamic Model of a Cement Kiln
,”
Automatica
,
8
(
3
), pp.
309
323
.
8.
Guruz
,
H. K.
, and
Bac
,
N.
,
1981
, “
Mathematical Modelling of Rotary Cement Kilns by the Zone Method
,”
Can. J. Chem. Eng.
,
59
(
4
), pp.
540
548
.
9.
Mujumdar
,
K. S.
, and
Ranade
,
V. V.
,
2006
, “
Simulation of Rotary Cement Kilns Using a One-Dimensional Model
,”
Chem. Eng. Res. Des.
,
84
(
3
), pp.
165
177
.
10.
Mujumdar
,
K. S.
,
Ganesh
,
K. V.
,
Kulkarni
,
S. V.
, and
Ranade
,
V. V.
,
2007
, “
Rotary Cement Kiln Simulator (RoCKS): Integrated Modeling of Pre-Heater, Calciner, Kiln and Clinker Cooler
,”
Chem. Eng. Sci.
,
62
(
9
), pp.
2590
2607
.
11.
Fidaros
,
D. K.
,
Baxevanou
,
C. A.
,
Dritselis
,
C. D.
, and
Vlachos
,
N. S.
,
2007
, “
Numerical Modelling of Flow and Transport Processes in a Calciner for Cement Production
,”
Powder Technol.
,
171
(
2
), pp.
81
95
.
12.
Hottel
,
H. C.
,
1954
, “
Radiation Heat Transfer
,”
Heat Transmission
,
3rd ed.
,
W. H.
McAdams
, ed.,
McGraw-Hill
,
New York
, Chap. 4.
13.
Ghoshdastidar
,
P. S.
,
Rhodes
,
C. A.
, and
Orloff
,
D. I.
,
1985
, “Heat Transfer in a Rotary Kiln During Incineration of Solid Waste,”
ASME
Paper No. 85-HT-86.
14.
Gorog
,
J. P.
,
Brimacombe
,
J. K.
, and
Adams
,
T. N.
,
1981
, “
Radiative Heat Transfer in Rotary Kilns
,”
Metall. Trans. B
,
12
(
1
), pp.
55
70
.
15.
Brimacombe
,
J. K.
, and
Watkinson
,
A. P.
,
1978
, “
Heat Transfer in a Direct-Fire Rotary Kiln: I. Pilot P-Lant and Experimentation
,”
Metall. Trans. B
,
9
(
4
), pp.
201
208
.
16.
Sleicher
,
C. A.
, and
Rouse
,
M. W.
,
1975
, “
A Convenient Correlation for Heat Transfer to Constant and Variable Property Fluids in Turbulent Pipe Flow
,”
Int. J. Heat Mass Transfer
,
18
(
5
), pp.
677
683
.
17.
Barr
,
P. V.
,
Brimacombe
,
J. K.
, and
Watkinson
,
A. P.
,
1989
, “
A Heat Transfer Model for the Rotary Kiln: Part I Pilot Kiln Trials
,”
Metall. Trans. B
,
20
(
3
), pp.
391
402
.
18.
Mastorakos
,
E.
,
Massias
,
A.
,
Tsakiroglou
,
C. D.
,
Goussis
,
D. A.
, and
Burganos
,
V. N.
,
1999
, “
CFD Predictions for Cement Kiln Including Flame Modelling, Heat Transfer and Clinker Chemistry
,”
Appl. Math. Modell.
,
23
(
1
), pp.
55
76
.
19.
Li
,
S. Q.
,
Ma
,
L. B.
,
Wan
,
W.
, and
Yao
,
Q.
,
2005
, “
A Mathematical Model of Heat Transfer in a Rotary Kiln Thermo-Reactor
,”
Chem. Eng. Technol.
,
28
(
12
), pp.
1480
1489
.
20.
Martins
,
G.
,
1932
,
Cement Engineering and Thermodynamics Applied to the Cement Rotary Kiln
,
The Technical Press
,
London
.
21.
Rao
,
T. R.
,
Gunn
,
D. J.
, and
Bowen
,
J. H.
,
1989
, “
Kinetics of Calcium Carbonate Decomposition
,”
Chem. Eng. Res. Des.
,
67
, pp.
38
47
.
22.
Kim, N. K
.,
Lyon, J. E.
, and
Suryanarayana, N. V.
,
1986
, “
Heat Shield for High-Temperature Kiln
,”
Ind. Eng. Chem. Process Des. Develop.
,
25
(
4
), pp.
843
849
.
23.
Helmrich
,
H.
, and
Schugerl
,
K.
,
1980
, “
Rotary Kiln Reactors in Chemical Industry
,”
Ger. Chem. Eng.
,
3
, pp.
194
202
.
24.
Ar
,
I.
, and
Dogu
,
G.
,
2001
, “
Calcination Kinetics of High Purity Limestones
,”
Chem. Eng. J.
,
83
(
2
), pp.
131
137
.
25.
Sinhal
,
K.
,
Ghoshdastidar
,
P. S.
, and
Dasgupta
,
B.
,
2012
, “
Computer Simulation of Drying of Food Products With Superheated Steam in a Rotary Kiln
,”
ASME J. Therm. Sci. Eng. Appl.
,
4
(1), p.
011009
.
26.
Guo
,
Y. C.
,
Chan
,
C. K.
, and
Lau
,
K. S.
,
2003
, “
Numerical Studies of Pulverized Coal Combustion in a Tubular Coal Combustor With Slanted Oxygen Jet
,”
Fuel
,
82
(
8
), pp.
893
907
.
You do not currently have access to this content.