The present paper examines magnetohydrodynamic (MHD) three-dimensional (3D) flow of viscous nanoliquid in the presence of heat and mass flux conditions. A bidirectional nonlinearly stretching surface has been employed to create the flow. Heat and mass transfer attribute analyzed via thermophoresis and Brownian diffusion aspects. Viscous liquid is electrically conducted subject to applied magnetic field. Problem formulation is made through the boundary layer approximation under small magnetic Reynolds number. Appropriate transformations yield the strong nonlinear ordinary differential system. The obtained nonlinear system has been solved for the convergent homotopic solutions. Effects of different pertinent parameters with respect to temperature and concentration are sketched and discussed. The coefficients of skin friction and heat and mass transfer rates are computed numerically.

References

References
1.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
ASME
International Mechanical Engineering Congress and Exposition, San Fransisco, CA, Nov. 12–17, pp.
99
105
.https://www.osti.gov/scitech/servlets/purl/196525
2.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
.
3.
Lin
,
Y.
,
Zheng
,
L.
, and
Zhang
,
X.
,
2014
, “
Radiation Effects on Marangoni Convection Flow and Heat Transfer in Pseudo-Plastic Non-Newtonian Nanofluids With Variable Thermal Conductivity
,”
Int. J. Heat Mass Transfer
,
77
, pp.
708
716
.
4.
Hsiao
,
K. L.
,
2014
, “
Nanofluid Flow With Multimedia Physical Features for Conjugate Mixed Convection and Radiation
,”
Comp. Fluids
,
104
, pp.
1
8
.
5.
Sheikholeslami
,
M.
,
Bandpy
,
M. G.
,
Ellahi
,
R.
,
Hassan
,
M.
, and
Soleimani
,
S.
,
2014
, “
Effects of MHD on Cu–Water Nanofluid Flow and Heat Transfer by Means of CVFEM
,”
J. Magn. Magn. Mater.
,
349
, pp.
188
200
.
6.
Kuznetsov
,
A. V.
, and
Nield
,
D. A.
,
2014
, “
Natural Convective Boundary-Layer Flow of a Nanofluid Past a Vertical Plate: A Revised Model
,”
Int. J. Therm. Sci.
,
77
, pp.
126
129
.
7.
Hayat
,
T.
,
Muhammad
,
T.
,
Alsaedi
,
A.
, and
Alhuthali
,
M. S.
,
2015
, “
Magnetohydrodynamic Three-Dimensional Flow of Viscoelastic Nanofluid in the Presence of Nonlinear Thermal Radiation
,”
J. Magn. Magn. Mater.
,
385
, pp.
222
229
.
8.
Mahanthesh
,
B.
,
Gireesha
,
B. J.
, and
Gorla
,
R. S. R.
,
2016
, “
Mixed Convection Squeezing Three-Dimensional Flow in a Rotating Channel Filled With Nanofluid
,”
Int. J. Numer. Methods Heat Fluid Flow
,
26
(
5
), pp.
1460
1485
.
9.
Abbasi
,
F. M.
,
Shehzad
,
S. A.
,
Hayat
,
T.
, and
Ahmad
,
B.
,
2016
, “
Doubly Stratified Mixed Convection Flow of Maxwell Nanofluid With Heat Generation/Absorption
,”
J. Magn. Magn. Mater.
,
404
, pp.
159
165
.
10.
Hsiao
,
K. L.
,
2016
, “
Stagnation Electrical MHD Nanofluid Mixed Convection With Slip Boundary on a Stretching Sheet
,”
Appl. Therm. Eng.
,
98
, pp.
850
861
.
11.
Raju
,
C. S. K.
,
Sandeep
,
N.
, and
Malvandi
,
A.
,
2016
, “
Free Convective Heat and Mass Transfer of MHD Non-Newtonian Nanofluids Over a Cone in the Presence of Non-Uniform Heat Source/Sink
,”
J. Mol. Liq.
,
221
, pp.
108
115
.
12.
Malvandi
,
A.
,
Moshizi
,
S. A.
, and
Ganji
,
D. D.
,
2016
, “
Effects of Temperature-Dependent Thermophysical Properties on Nanoparticle Migration at Mixed Convection of Nanofluids in Vertical Microchannels
,”
Powder Technol.
,
303
, pp.
7
19
.
13.
Hayat
,
T.
,
Hussain
,
Z.
,
Muhammad
,
T.
, and
Alsaedi
,
A.
,
2016
, “
Effects of Homogeneous and Heterogeneous Reactions in Flow of Nanofluids Over a Nonlinear Stretching Surface With Variable Surface Thickness
,”
J. Mole. Liq.
,
221
, pp.
1121
1127
.
14.
Imtiaz
,
M.
,
Hayat
,
T.
, and
Alsaedi
,
A.
,
2016
, “
Flow of Magneto Nanofluid by a Radiative Exponentially Stretching Surface With Dissipation Effect
,”
Adv. Powder. Tech
,
27
(
5
), pp.
2214
2222
.
15.
Hayat
,
T.
,
Abbas
,
T.
,
Ayub
,
M.
,
Farooq
,
M.
, and
Alsaedi
,
A.
,
2016
, “
Flow of Nanofluid Due to Convectively Heated Riga Plate With Variable Thickness
,”
J. Mole. Liq.
,
222
, pp.
854
862
.
16.
Turkyilmazoglu
,
M.
,
2016
, “
Flow of Nanofluid Plane Wall Jet and Heat Transfer
,”
Euro. J. Mech. B
,
59
, pp.
18
24
.
17.
Mushtaq
,
A.
,
Mustafa
,
M.
,
Hayat
,
T.
, and
Alsaedi
,
A.
,
2016
, “
Numerical Study for Rotating Flow of Nanofluids Caused by an Exponentially Stretching Sheet
,”
Adv. Powder Technol.
,
27
(
5
), pp.
2223
2231
.
18.
Sheikholeslami
,
M.
,
Hayat
,
T.
, and
Alsaedi
,
A.
,
2016
, “
MHD Free Convection of Al2O3-Water Nanofluid Considering Thermal Radiation: A Numerical Study
,”
Int. J. Heat Mass Transfer
,
96
, pp.
513
524
.
19.
Hayat
,
T.
,
Aziz
,
A.
,
Muhammad
,
T.
, and
Alsaedi
,
A.
,
2016
, “
On Magnetohydrodynamic Three-Dimensional Flow of Nanofluid Over a Convectively Heated Nonlinear Stretching Surface
,”
Int. J. Heat Mass Transfer
,
100
, pp.
566
572
.
20.
Hayat
,
T.
,
Muhammad
,
T.
,
Qayyum
,
A.
,
Alsaedi
,
A.
, and
Mustafa
,
M.
,
2016
, “
On Squeezing Flow of Nanofluid in the Presence of Magnetic Field Effects
,”
J. Mol. Liq.
,
213
, pp.
179
185
.
21.
Gupta
,
P. S.
, and
Gupta
,
A. S.
,
1977
, “
Heat and Mass Transfer on a Stretching Sheet With Suction or Blowing
,”
Can. J. Chem. Eng.
,
55
(
6
), pp.
744
746
.
22.
Vajravelu
,
K.
,
2001
, “
Viscous Flow Over a Nonlinearly Stretching Sheet
,”
Appl. Math. Comput.
,
124
(3), pp.
281
288
.
23.
Cortell
,
R.
,
2007
, “
Viscous Flow and Heat Transfer Over a Nonlinearly Stretching Sheet
,”
Appl. Math. Comput.
,
184
(2), pp.
864
873
.
24.
Hayat
,
T.
,
Hussain
,
Q.
, and
Javed
,
T.
,
2009
, “
The Modified Decomposition Method and Padé Approximants for the MHD Flow Over a Non-Linear Stretching Sheet
,”
Nonlinear Anal.: Real World Appl.
,
10
(
2
), pp.
966
973
.
25.
Mukhopadhyay
,
S.
,
2013
, “
Analysis of Boundary Layer Flow Over a Porous Nonlinearly Stretching Sheet With Partial Slip at the Boundary
,”
Alexandria Eng. J.
,
52
(
4
), pp.
563
569
.
26.
Mabood
,
F.
,
Khan
,
W. A.
, and
Ismail
,
A. I. M.
,
2015
, “
MHD Boundary Layer Flow and Heat Transfer of Nanofluids Over a Nonlinear Stretching Sheet: A Numerical Study
,”
J. Magn. Magn. Mater.
,
374
, pp.
569
576
.
27.
Mustafa
,
M.
,
Khan
,
J. A.
,
Hayat
,
T.
, and
Alsaedi
,
A.
,
2015
, “
Analytical and Numerical Solutions for Axisymmetric Flow of Nanofluid Due to Non-Linearly Stretching Sheet
,”
Int. J. Nonlinear Mech.
,
71
, pp.
22
29
.
28.
Hayat
,
T.
,
Aziz
,
A.
,
Muhammad
,
T.
,
Alsaedi
,
A.
, and
Mustafa
,
M.
,
2016
, “
On Magnetohydrodynamic Flow of Second Grade Nanofluid Over a Convectively Heated Nonlinear Stretching Surface
,”
Adv. Powder Technol.
,
27
(
5
), pp.
1992
2004
.
29.
Liao
,
S. J.
,
2012
,
Homotopy Analysis Method in Nonlinear Differential Equations
,
Springer, Berlin
.
30.
Dehghan
,
M.
,
Manafian
,
J.
, and
Saadatmandi
,
A.
,
2010
, “
Solving Nonlinear Fractional Partial Differential Equations Using the Homotopy Analysis Method
,”
Numer. Methods Partial Differ. Equations
,
26
(2), pp.
448
479
.
31.
Malvandi
,
A.
,
Hedayati
,
F.
, and
Domairry
,
G.
,
2013
, “
Stagnation Point Flow of a Nanofluid Toward an Exponentially Stretching Sheet With Nonuniform Heat Generation/Absorption
,”
J. Thermodyn.
,
2013
, p.
764827
.
32.
Ellahi
,
R.
,
Hassan
,
M.
, and
Zeeshan
,
A.
,
2015
, “
Shape Effects of Nanosize Particles in Cu–H2O Nanofluid on Entropy Generation
,”
Int. J. Heat Mass Transfer
,
81
, pp.
449
456
.
33.
Lin
,
Y.
, and
Zheng
,
L.
,
2015
, “
Marangoni Boundary Layer Flow and Heat Transfer of Copper-Water Nanofluid Over a Porous Medium Disk
,”
AIP Adv.
,
5
(
10
), p.
107225
.
34.
Hayat
,
T.
,
Muhammad
,
T.
,
Alsaedi
,
A.
, and
Mustafa
,
M.
,
2016
, “
A Comparative Study for Flow of Viscoelastic Fluids With Cattaneo-Christov Heat Flux
,”
Plos One
,
11
, p.
e0155185
.
35.
Hayat
,
T.
,
Muhammad
,
T.
,
Al-Mezal
,
S.
, and
Liao
,
S. J.
,
2016
, “
Darcy-Forchheimer Flow With Variable Thermal Conductivity and Cattaneo-Christov Heat Flux
,”
Int. J. Numer. Methods Heat Fluid Flow
,
26
, pp.
2355
2369
.
36.
Ariel
,
P. D.
,
2007
, “
The Three-Dimensional Flow Past a Stretching Sheet and the Homotopy Perturbation Method
,”
Comput. Math. Appl.
,
54
(
7–8
), pp.
920
925
.
You do not currently have access to this content.