The aim of this work is to perform a thermal analysis of the operational conditions of a large-scale roller conveyor furnace in a ceramic factory. The entire furnace was divided into three subzones according to the combustion conditions, and the temperature and gas (CO2, H2O vapor, and O2) distributions of each subzone were evaluated. The computational fluid dynamics (CFD) approach was employed to simulate the flow, temperature profile, and heat transfer. The realizable k–ε model was applied for turbulence simulation of the fluid flow coming from the burners. The discrete ordinates method (DOM) and weighted sum of gray gases (WSGG) model were used for simulation of the radiative heat transfer of the furnace. The high accuracy of the simulation methods was validated with the temperature data of the furnace measured by an infrared thermal camera. From the comparisons between the furnace's operating conditions and the numerical simulations, it was concluded that the simulation methods yielded successful results, and relative deviations of up to 22% were observed in the side wall.

References

References
1.
Liu
,
F.
, and
Smallwood
,
G. J.
,
2011
, “
Control of the Structure and Sooting Characteristics of a Coflow Laminar Methane/Air Diffusion Flame Using a central Air Jet: An Experimental and Numerical Study
,”
Proc. Combust. Inst.
,
33
(1), pp.
1063
1070
.
2.
Zhou
,
H. C.
,
Yuan
,
P.
,
Sheng
,
F.
, and
Zheng
,
C. G.
,
2000
, “
Simultaneous Estimation of the Profiles of the Temperature and the Scattering Albedo in an Absorbing, Emitting and Isotropically Scattering Medium by Inverse Analysis
,”
Int. J. Heat Mass Transfer
,
43
(23), pp.
4361
4364
.
3.
Cardew
,
M.
,
2002
,
Pioneer Pottery
,
A&C Black
,
London
, pp.
220
224
.
4.
Tan
,
C.-K.
,
Jenkins
,
J.
,
Ward
,
J.
,
Broughton
,
J.
, and
Heeley
,
A.
,
2013
, “
Zone Modelling of the Thermal Performances of a Large-Scale Bloom Reheating Furnace
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
1111
1118
.
5.
Li
,
Z.
,
Barr
,
P. V.
, and
Brimacombe
,
J. K.
,
1988
, “
Computer Simulation of the Slab Reheating Furnace
,”
Can. Metall. Q.
,
27
(
3
), pp.
187
196
.
6.
Chapman
,
K. S.
,
Ramadhyani
,
S.
, and
Viskanta
,
R.
,
1994
, “
Two-Dimensional Modeling and Parametric Studies of Heat Transfer in a Direct-Fired Furnace With Impinging Jets
,”
Combust. Sci. Technol.
,
97
(1–3), pp.
99
120
.
7.
Zhang
,
C.
,
Ishii
,
T.
, and
Sugiyama
,
S.
,
1997
, “
Numerical Modeling of the Thermal Performance of Regenerative Slab Reheat Furnaces
,”
Numer. Heat Transfer Part A
,
32
(6), pp.
613
631
.
8.
Kim
,
J. G.
, and
Huh
,
K. Y.
,
2000
, “
Three Dimensional Analysis of the Walking Beam Type Reheating Furnace in Hot Strip Mills
,”
Numer. Heat Transfer, Part A
,
38
(
6
), pp.
589
609
.
9.
Kim
,
J. G.
, and
Huh
,
K. Y.
,
2000
, “
Prediction of Transient Slab Temperature Distribution in the Re-Heating Furnace of a Walking-Beam Type for Rolling of Steel Slabs
,”
ISIJ Int.
,
40
(
11
), pp.
1115
1123
.
10.
Naccache
,
M. F.
,
Gomes
,
M. S. P.
, and
Nieckele
,
A. O.
,
2005
, “
Numerical Simulation of Flow and Heat Transfer Through a Tunnel Kiln
,”
18th International Congress of Mechanical Engineering
, Ouro Preto, MG, Nov. 6–11.http://www.abcm.org.br/anais/cobem/2005/PDF/COBEM2005-0111.pdf
11.
Nicolau
,
V. P.
, and
Dadam
,
A. P.
,
2009
, “
Numerical and Experimental Thermal Analysis of a Tunnel Kiln Used in Ceramic Production
,”
J. Braz. Soc. Mech. Sci. Eng.
,
XXXI
(
4
), pp.
297
304
.
12.
Jaclic
,
A.
,
Vode
,
F.
, and
Kolenko
,
T.
,
2007
, “
Online Simulation Model of the Slab-Reheating Process in a Pusher-Type Furnace
,”
Appl. Therm. Eng.
,
27
(5–6), pp.
1105
1114
.
13.
Han
,
S. H.
,
Baek
,
S. W.
,
Kang
,
S. H.
, and
Kim
,
C. Y.
,
2007
, “
Numerical Analysis of Heating Characteristics of a Slab in a Bench Scale Reheating Furnace
,”
Int. J. Heat Mass Transfer
,
50
(9–10), pp.
2019
2023
.
14.
Han
,
S. H.
,
Baek
,
S. W.
, and
Kim
,
M. Y.
,
2009
, “
Transient Radiative Heating Characteristics of Slabs in a Walking Beam Type Reheating Furnace
,”
Int. J. Heat Mass Transfer
,
52
(
3–4
), pp.
1005
1011
.
15.
Han
,
S. H.
, and
Chang
,
D.
,
2012
, “
Radiative Slab Heating Analysis for Various Fuel Gas Compositions in an Axial-Fired Reheating Furnace
,”
Int. J. Heat Mass Transfer
,
55
(15–16), pp.
4029
4036
.
16.
Guihua
,
H.
,
Honggang
,
W.
, and
Feng
,
Q.
,
2011
, “
Numerical Simulation on Flow, Combustion and Heat Transfer of Ethylene Cracking Furnaces
,”
Chem. Eng. Sci.
,
66
(8), pp.
1600
1611
.
17.
Li
,
X.
,
Zhang
,
L.
,
Sun
,
Y.
,
Jiang
,
B.
,
Li
,
X.
, and
Wang
,
J.
,
2015
, “
Numerical Simulation of the Flue Gas Side of Refining Vacuum Furnace Using CFD
,”
Chem. Eng. Sci.
,
123
, pp.
70
80
.
18.
Bhuiyan
,
A. A.
, and
Naser
,
J.
,
2015
, “
Numerical Modelling of Oxy Fuel Combustion, the Effect of Radiative and Convective Heat Transfer and Burnout
,”
Fuel
,
139
, pp.
268
284
.
19.
Guo
,
J.
,
Liu
,
Z.
,
Wanga
,
P.
,
Huang
,
X.
,
Li
,
J.
,
Xu
,
P.
, and
Zheng
,
C.
,
2015
, “
Numerical Investigation on Oxy-Combustion Characteristics of a 200 MWe Tangentially Fired Boiler
,”
Fuel
,
140
, pp.
660
668
.
20.
Rafaey
,
H. A. M. H.
,
2013
, “Mathematical Model to Analyze the Heat Transfer in Tunnels Kilns for Burning of Ceramics,”
Ph.D. thesis
, Universität Magdeburg, Magdeburg, Germany.https://d-nb.info/105441971X/34
21.
Zhang
,
J.
,
Ito
,
T.
,
Ito
,
S.
,
Riechelmann
,
D.
, and
Toshiro
,
F.
,
2015
, “
Numerical Investigation of Oxy-Coal Combustion in a Large-Scale Furnace: Non-Gray Effect of Gas and Role of Particle Radiation
,”
Fuel
,
139
, pp.
87
93
.
22.
Prieler
,
R.
,
Demuth
,
M.
,
Spoljaric
,
D.
, and
Hochenauer
,
C.
,
2015
, “
Numerical Investigation of the Steady Flamelet Approach Under Different Combustion Environments
,”
Fuel
,
140
, pp.
731
743
.
23.
Singh
,
V. K.
, and
Talukdar
,
P.
,
2013
, “
Comparisons of Different Heat Models of a Walking Beam Type Reheat Furnace
,”
Int. Commun. Heat Mass Transfer
,
47
, pp.
20
26
.
24.
Mishra
,
S. C.
,
Kim
,
M. Y.
,
Das
,
R.
,
Ajith
,
M.
, and
Uppaluri
,
R.
,
2009
, “
Lattice Boltzman Method Applied to Analysis of Transient Conduction-Radiation Problems in a Cylindrical Medium
,”
Numer. Heat Transfer, Part A: Appl.
,
56
(
1
), pp.
42
59
.
25.
Das
,
R.
,
Mishra
,
S. C.
,
Kumar
,
T. B. P.
, and
Uppaluri
,
R.
,
2011
, “
An Inverse Analysis for Parameter Estimation Applied to a Non-Fourier Conduction-Radiation Problem
,”
Heat Transfer Eng.
,
32
(
6
), pp.
455
466
.
26.
Das
,
R.
,
Mishra
,
S. C.
, and
Uppaluri
,
R.
,
2010
, “
Inverse Analysis Applied to Retrieval of Parameters and Reconstruction of Temperature Field in a Transient Conduction-Radiation Heat Transfer Problem Involving Mixed Boundary Conditions
,”
Int. Comm. Heat Mass Transfer
,
37
(1), pp.
52
57
.
27.
Ajith
,
M.
,
Das
,
R.
,
Uppaluri
,
R.
, and
Mishra
,
S. C.
,
2010
, “
Boundary Heat Fluxes in a Square Enclosure With an Embedded Design Element
,”
J. Thermophys. Heat Transfer
,
24
(
4
), pp.
845
849
.
28.
Howell
,
J. R.
,
Siegel
,
R.
, and
Mengüç
,
M. P.
,
2011
,
Thermal Radiation Heat Transfer
,
5th ed.
,
Taylor & Francis Group
, New York.
29.
Selçuk
,
N.
, and
Doner
,
N.
,
2009
, “
A 3-D Radiation Model for Non-Grey Gases
,”
J. Quant. Spectrosc. Radiat. Transfer
,
110
(
3
), pp.
184
191
.
30.
Doner
,
N.
, and
Selçuk
,
N.
,
2013
, “
An Application of Spectral Line-Based Weighted Sum of Grey Gases (SLW) Model With Geometric Optics Approximation for Radiative Heat Transfer in 3-D Participating Media
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
89
93
.
31.
ANSYS,
2014
, “ANSYS Fluent User Guide,” ANSYS, Inc., Canonsburg, PA.
32.
Lynn, 2015, “Experts in High Temperature Insulation,” Lynn Manufacturing Inc., Lynn, MA, accessed Nov. 30, 2017, http://www.lynnmfg.com
33.
Weber
,
R.
,
Orsino
,
S.
,
Lallemant
,
N.
, and
Verlaan
,
A.
,
2000
, “
Combustion of Natural Gas With High-Temperature Air and Large Quantities of Flue Gas
,”
Proc. Combust. Inst.
,
28
(1), pp.
1315
1321
.
You do not currently have access to this content.