Rotational effects lead to significant nonuniformity in heat transfer (HT) enhancement and this effect is directly proportional to the rotation number (Ro=ΩD/V). Hence, the development of cooling designs, which have less dependence on rotation, is imperative. This paper studied the effect of rotation on crossflow-induced swirl configuration with the goal of demonstrating a new design that has lesser response toward rotational effects. The new design passes coolant from one pass to the second pass through a set of angled holes to induce impingement and swirling flow to generate higher HT coefficients than typical ribbed channels with 180-deg bend between the two passages. Detailed HT coefficients are presented for stationary and rotating conditions using transient liquid crystal (TLC) thermography. The channel Reynolds number based on the channel hydraulic diameter and channel velocity at inlet/outlet ranged from 25,000 to 100,000. The rotation number ranged from 0 to 0.14. Results show that rotation reduced the HT on both sides of the impingement due to the Coriolis force. The maximum local reduction of HT in the present study was about 30%. Rotation significantly enhanced the HT near the closed end because of the centrifugal force and the “pumping” effect, which caused local HT enhancements up to 100%. Compared to U-bend two pass channels, impingement channels had advantages in the upstream channel and the end region, but HT performance was not beneficial on the leading side of the downstream channel.

References

References
1.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
,
2013
,
Gas Turbine Heat Transfer and Cooling Technology
,
CRC Press
, Boca Raton, FL.
2.
Han
,
B.
, and
Goldstein
,
R. J.
,
2001
, “
Jet-Impingement Heat Transfer in Gas Turbine Systems
,”
Ann. N. Y. Acad. Sci.
,
934
, pp.
147
161
.
3.
Viskanta
,
R.
,
1993
, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
,
6
(
2
), pp.
111
134
.
4.
Goldstein
,
R. J.
,
Behbahani
,
A. I.
, and
Heppelmann
,
K. K.
,
1986
, “
Streamwise Distribution of the Recovery Factor and the Local Heat Transfer Coefficient to an Impinging Circular Air Jet
,”
Int. J. Heat Mass Transfer
,
29
(
8
), pp.
1227
1235
.
5.
Chupp
,
R. E.
,
Helms
,
H. E.
, and
McFadden
,
P. W.
,
1969
, “
Evaluation of Internal Heat-Transfer Coefficients for Impingement-Cooled Turbine Airfoils
,”
J. Aircr.
,
6
(
3
), pp.
203
208
.https://arc.aiaa.org/doi/abs/10.2514/3.44036
6.
Ricklick
,
M.
, and
Kapat
,
J. S.
,
2011
, “
Determination of a Local Bulk Temperature Based Heat Transfer Coefficient for the Wetted Surfaces in a Single Inline Row Impingement Channel
,”
ASME J. Turbomach.
,
133
(
3
), p. 031008.
7.
Ricklick
,
M.
,
Claretti
,
R.
, and
Kapat
,
J. S.
,
2010
, “
Channel Height and Jet Spacing Effect on Heat Transfer and Uniformity Coefficient on an Inline Row Impingement Channel
,”
ASME
Paper No. GT2010-23757.
8.
Ricklick
,
M.
,
Kersten
,
S.
,
Krishnan
,
V.
, and
Kapat
,
J. S.
,
2009
, “
Effects of Channel Height and Bulk Temperature Considerations on Heat Transfer Coefficient of Wetted Surfaces in A Single Inline Row Impingement Channel
,”
ASME
Paper No. HT2008-56323.
9.
Taslim
,
M. E.
, and
Bethka
,
D.
,
2009
, “
Experimental and Numerical Impingement Heat Transfer in an Airfoil Leading-Edge Cooling Channel With Cross-Flow
,”
ASME J. Turbomach.
,
131
(
1
), p.
011021
.
10.
Taslim
,
M. E.
, and
Khanicheh
,
A.
,
2006
, “
Experimental and Numerical Study of Impingement on an Airfoil Leading Edge With and Without Showerhead and Gill Film Holes
,”
ASME J. Turbomach.
,
128
(
2
), pp.
310
320
.
11.
Taslim
,
M. E.
,
Bakhtari
,
K.
, and
Liu
,
H.
,
2003
, “
Experimental and Numerical Investigation of Impingement on a Rib-Roughened Leading-Edge Wall
,”
ASME J. Turbomach.
,
125
(
4
), pp.
682
691
.
12.
Metzger
,
D. E.
,
Bunker
,
R. S.
, and
Bosch
,
G.
,
1991
, “
Transient Liquid Crystal Measurement of Local Heat Transfer on a Rotating Disk With Jet Impingement
,”
ASME J. Turbomach.
,
113
(1), pp. 52–59.
13.
Huang
,
Y.
,
Ekkad
,
S. V.
, and
Han
,
J. C.
,
1998
, “
Detailed Heat Transfer Distributions Under an Array of Orthogonal Impinging Jets
,”
J. Thermophys. Heat Transfer
,
12
(
1
), pp.
73
79
.
14.
Ekkad
,
S. V.
, and
Kontrovitz
,
D.
,
2002
, “
Jet Impingement Heat Transfer on Dimpled Target Surfaces
,”
Int. J. Heat Fluid Flow
,
23
(
1
), pp.
22
28
.
15.
Azad
,
G. S.
,
Huang
,
Y.
, and
Han
,
J. C.
,
2000
, “
Impingement Heat Transfer on Dimpled Surfaces Using a Transient Liquid Crystal Technique
,”
J. Thermophys. Heat Transfer
,
14
(
2
), pp.
186
193
.
16.
Kanokjaruvijit
,
K.
, and
Martinez-botas
,
R. F.
,
2005
, “
Jet Impingement on a Dimpled Surface With Different Crossflow Schemes
,”
Int. J. Heat Mass Transfer
,
48
(
1
), pp.
161
170
.
17.
Park
,
J.
,
Goodro
,
M.
,
Ligrani
,
P.
,
Fox
,
M.
, and
Moon
,
H. K.
,
2007
, “
Separate Effects of Mach Number and Reynolds Number on Jet Array Impingement Heat Transfer
,”
ASME J. Turbomach.
,
129
(
2
), pp.
269
280
.
18.
Katti
,
V.
, and
Prabhu
,
S. V.
,
2008
, “
Experimental Study and Theoretical Analysis of Local Heat Transfer Distribution Between Smooth Flat Surface and Impinging Air Jet From a Circular Straight Pipe Nozzle
,”
Int. J. Heat Mass Transfer
,
51
(
17
), pp.
4480
4495
.
19.
Ireland
,
P. T.
, and
Jones
,
T. V.
,
2000
, “
Liquid Crystal Measurements of Heat Transfer and Surface Shear Stress
,”
Meas. Sci. Technol.
,
11
(
7
), p.
969
.
20.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
2000
, “
A Transient Liquid Crystal Thermography Technique for Gas Turbine Heat Transfer Measurements
,”
Meas. Sci. Technol.
,
11
(
7
), p.
957
.
21.
Carlomagno
,
G. M.
, and
Cardone
,
G.
,
2010
, “
Infrared Thermography for Convective Heat Transfer Measurements
,”
Exp. Fluids
,
49
(
6
), pp.
1187
1218
.
22.
Astarita
,
T.
,
Cardone
,
G.
,
Carlomagno
,
G. M.
, and
Meola
,
C.
,
2000
, “
A Survey on Infrared Thermography for Convective Heat Transfer Measurements
,”
Opt. Laser Technol.
,
32
(
7
), pp.
593
610
.
23.
Epstein
,
A. H.
,
Kerrebrock
,
J. L.
,
Koo
,
J. J.
, and
Preiser
,
U. Z.
,
1987
, “
Rotational Effects on Impingement Cooling
,” First International Symposium on Transport Phenomena, Honolulu, HI, Apr. 28–May 3, pp.
86
102
.
24.
Parsons
,
J. A.
, and
Han
,
J. C.
,
1998
, “
Rotation Effect on Jet Impingement Heat Transfer in Smooth Rectangular Channels With Heated Target Walls and Radially Outward Cross Flow
,”
Int. J. Heat Mass Transfer
,
41
(
13
), pp.
2059
2071
.
25.
Parsons
,
J. A.
,
Han
,
J. C.
, and
Lee
,
C. P.
,
1996
, “
Rotation Effect on Jet Impingement Heat Transfer in Smooth Rectangular Channels With Four Heated Walls and Radially Outward Cross Flow
,”
ASME
Paper No. 96-GT-387.
26.
Parsons
,
J. A.
,
Han
,
J. C.
, and
Lee
,
C. P.
,
2003
, “
Rotation Effect on Jet Impingement Heat Transfer in Smooth Rectangular Channels With Four Heated Walls and Film Coolant Extraction
,”
ASME
Paper No. GT2003-38905.
27.
Parsons
,
J. A.
, and
Han
,
J. C.
,
2001
, “
Rotation Effect on Jet Impingement Heat Transfer in Smooth Rectangular Channels With Film Coolant Extraction
,”
Int. J. Rotating Mach.
,
7
(
2
), pp.
87
103
.
28.
Kreatsoulas
,
J.
,
Kerrebrock
,
J.
,
Epstein
,
A.
, and
Rogo
,
C.
,
1987
, “
Experimental Data Correlations for the Effects of Rotation on Impingement Cooling of Turbine Blades
,”
AIAA
Paper No. AIAA-87-2008.
29.
Kreatsoulas
,
J.
,
Kerrebrock
,
J.
,
Epstein
,
A.
, and
Rogo
,
C.
,
1985
, “
Effects of Rotation on Impingement Cooling of Turbine Blades
,”
AIAA
Paper No. AIAA-85-1217.
30.
Elston
,
C. A.
, and
Wright
,
L. M.
,
2012
, “Leading EDGE JET Impingement Under High Rotation Numbers,”
ASME
Paper No. IMECE2012-88332.
31.
Wright
,
L. M.
, and
Elston
,
C. A.
,
2012
, “
Experimental Investigation of Heat Transfer in a Leading Edge, Two-Pass Serpentine Passage at High Rotation Numbers
,”
ASME
Paper No. HT2012-58360.
32.
Hong
,
S. K.
,
Lee
,
D. H.
, and
Cho
,
H. H.
,
2009
, “
Heat/Mass Transfer in Rotating Impingement/Effusion Cooling With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
52
(
13–14
), pp.
3109
3117
.
33.
Hong
,
S. K.
,
Lee
,
D. H.
, and
Cho
,
H. H.
,
2009
, “
Effect of Jet Direction on Heat/Mass Transfer of Rotating Impingement Jet
,”
Appl. Therm. Eng.
,
29
(
14–15
), pp.
2914
2920
.
34.
Hong
,
S. K.
,
Lee
,
D. H.
, and
Cho
,
H. H.
,
2008
, “
Heat/Mass Transfer Measurement on Concave Surface in Rotating Jet Impingement
,”
J. Mech. Sci. Technol.
,
22
(
10
), pp.
1952
1958
.
35.
Li
,
H.
,
Chiang
,
H. D.
, and
Hsu
,
C.
,
2011
, “
Jet Impingement and Forced Convection Cooling Experimental Study in Rotating Turbine Blades
,”
Int. J. Turbo. Jet Engines
,
28
(
2
), pp.
147
158
.
36.
Iacovides
,
H.
,
Kounadis
,
D.
,
Launder
,
B. E.
,
Li
,
J.
, and
Xu
,
Z.
,
2005
, “
Experimental Study of the Flow and Thermal Development of a Row Cooling Jets Impinging on a Rotating Concave Surface
,”
ASME J. Turbomach.
,
127
(
1
), pp.
222
229
.
37.
Lamont
,
J. A.
,
Ekkad
,
S. V.
, and
Alvin
,
M. A.
,
2012
, “
Detailed Heat Transfer Measurements Inside Rotating Ribbed Channels Using the Transient Liquid Crystal Technique
,”
ASME J. Therm. Sci. Eng. Appl.
,
4
(
1
), p.
011002
.
38.
Lamont
,
J. A.
,
Ekkad
,
S. V.
, and
Alvin
,
M. A.
,
2012
, “
Effects of Rotation on Heat Transfer for a Single Row Jet Impingement Array With Crossflow
,”
ASME J. Heat Trans.
,
134
(
8
), p.
082202
.
39.
Lamont
,
J. A.
,
Ekkad
,
S. V.
, and
Alvin
,
M. A.
,
2014
, “
Effect of Rotation on Detailed Heat Transfer Distribution for Various Rib Geometries in Developing Channel Flow
,”
ASME J. Heat Trans.
,
136
(
1
), p.
011901
.
40.
Pamula
,
G.
,
Ekkad
,
S. V.
, and
Acharya
,
S.
,
2001
, “
Influence of Crossflow-Induced Swirl and Impingement on Heat Transfer in a Two-Pass Channel Connected by Two Rows of Holes
,”
ASME J. Turbomach.
,
123(1
), pp.
281
287
.
41.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
42.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
43.
Kan
,
R.
,
Ren
,
J.
, and
Jiang
,
H. D.
,
2013
, “
Uncertainties of the Transient Thermochromic Liquid Crystal Method in Gas Turbine Internal Cooling Measurements
,”
J. Eng. Thermophys.
,
34
(
8
), pp.
1444
1448
.
44.
Wagner
,
J. H.
,
Johnson
,
B. V.
, and
Kopper
,
F. C.
,
1991
, “
Heat Transfer in Rotating Serpentine Passages With Smooth Walls
,”
ASME J. Turbomach.
,
113
(3), pp.
321
330
.
45.
Wagner
,
J. H.
,
Johnson
,
B. V.
,
Graziani
,
R. A.
, and
Yeh
,
F. C.
,
1992
, “
Heat Transfer in Rotating Serpentine Trips Normal to the Flow
,”
ASME J. Turbomach.
,
114
(4), pp.
847
857
.
46.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
,
1981
, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME
Paper No. 81-GT-77.
You do not currently have access to this content.