Heat transfer is a naturally occurring phenomenon and its augmentation is a vital research topic for many years. Although, vortex generators (VGs) are widely used to enhance the heat transfer of plate-fin type heat exchangers, few researches deal with its thermal optimization. This work is dedicated to the numerical investigation and optimization of VGs configuration in a plate-fin channel. Three-dimensional (3D) numerical simulations are performed to study the effect of angle of attack and attach angle (angle between VG and wall) and shape of VG on the fluid flow and heat transfer characteristics. The flow is assumed as steady-state, incompressible, and laminar within the range of studied Reynolds numbers (Re = 380–1140). Results are presented in the form average and local Nusselt number and friction factor. The effect of attach angle is highlighted and the results show that the attach angle of 90 deg may not be necessary for enhancing the heat transfer. The flow structure and heat transfer characteristics of certain cases are examined in detail. The parameters of VG are then optimized for maximum heat transfer and minimum pressure drop. The three independent design parameters are considered for the two objective functions. For this purpose, computation fluid dynamics (CFD) data, response surface methodology (RSM) and a multi-objective optimization algorithm (MOA) are combined. The data obtained from numerical simulations are used to train a Bayesian-regularized artificial neural network (BRANN). This in turn is used to drive a MOA to find the optimal parameters of VGs in the form of Pareto front. The optimal values of these parameters are finally presented.

References

References
1.
Lin
,
J. C.
,
2002
, “
Review of Research on Low-Profile Vortex Generators to Control Boundary-Layer Separation
,”
Prog. Aerosp. Sci.
,
38
(
4–5
), pp.
389
420
.
2.
Ahmed
,
H. E.
,
Mohammed
,
H. A.
, and
Yusoff
,
M. Z.
,
2012
, “
An Overview on Heat Transfer Augmentation Using Vortex Generators and Nanofluids: Approaches and Applications
,”
Renewable Sustainable Energy Rev.
,
16
(
8
), pp.
5951
5993
.
3.
Ahmed
,
H. E.
,
Mohammed
,
H. A.
, and
Yusoff
,
M. Z.
,
2012
, “
Heat Transfer Enhancement of Laminar Nanofluids Flow in a Triangular Duct Using Vortex Generator
,”
Superlattices Microstruct.
,
52
(
3
), pp.
398
415
.
4.
Jacobi
,
A. M.
, and
Shah
,
R. K.
,
1995
, “
Heat Transfer Surface Enhancement Through the Use of Longitudinal Vortices: A Review of Recent Progress
,”
Exp. Therm. Fluid Sci.
,
11
(
3
), pp.
295
309
.
5.
Biswas
,
G.
,
Chattopadhyay
,
H.
, and
Sinha
,
A.
,
2012
, “
Augmentation of Heat Transfer by Creation of Streamwise Longitudinal Vortices Using Vortex Generators
,”
Heat Transfer Eng.
,
33
(
4–5
), pp.
406
424
.
6.
Mitra
,
N.
, and
Fiebig
,
M.
,
1995
, “
Comparison of Wing-Type Vortex Generators for Heat Transfer Enhancement in Channel Flows
,”
Previews Heat Mass Transfer
,
2
(
21
), p.
102
.
7.
Mitra
,
N.
, and
Fiebig
,
M.
,
1993
, “
Experimental Investigations of Heat Transfer Enhancement and Flow Losses in a Channel With Double Rows of Longitudinal Vortex Generators
,”
Int. J. Heat Mass Transfer
,
36
(
9
), pp.
2327
2337
.
8.
Tanaka
,
T.
,
Itoh
,
M.
,
Hatada
,
T.
, and
Matsushima
,
H.
,
2000
, “
Influence of Inclination Angle, Attack Angle and Arrangement of Rectangular Vortex Generators on Heat Transfer Performance
,”
Heat Transfer-Asian Res.
,
32
(
3
), pp.
253
267
.
9.
Khoshvaght-Aliabadi
,
M.
,
Zangouei
,
S.
, and
Hormozi
,
F.
,
2015
, “
Performance of a Plate-Fin Heat Exchanger With Vortex-Generator Channels: 3D-CFD Simulation and Experimental Validation
,”
Int. J. Therm. Sci.
,
88
, pp.
180
192
.
10.
Khoshvaght-Aliabadi
,
M.
,
Hormozi
,
F.
, and
Zamzamian
,
A.
,
2014
, “
Effects of Geometrical Parameters on Performance of Plate-Fin Heat Exchanger: Vortex-Generator as Core Surface and Nanofluid as Working Media
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
565
579
.
11.
Tian
,
L.-T.
,
He
,
Y.-L.
,
Lei
,
Y.-G.
, and
Tao
,
W.-Q.
,
2009
, “
Numerical Study of Fluid Flow and Heat Transfer in a Flat-Plate Channel With Longitudinal Vortex Generators by Applying Field Synergy Principle Analysis
,”
Int. Commun. Heat Mass Transfer
,
36
(
2
), pp.
111
120
.
12.
Wu
,
J.
, and
Tao
,
W.
,
2008
, “
Numerical Study on Laminar Convection Heat Transfer in a Rectangular Channel With Longitudinal Vortex Generator—Part A: Verification of Field Synergy Principle
,”
Int. J. Heat Mass Transfer
,
51
(
5
), pp.
1179
1191
.
13.
Wu
,
J.
, and
Tao
,
W.
,
2008
, “
Numerical Study on Laminar Convection Heat Transfer in a Channel With Longitudinal Vortex Generator—Part B: Parametric Study of Major Influence Factors
,”
Int. J. Heat Mass Transfer
,
51
(
13
), pp.
3683
3692
.
14.
Min
,
C.
,
Qi
,
C.
,
Kong
,
X.
, and
Dong
,
J.
,
2010
, “
Experimental Study of Rectangular Channel With Modified Rectangular Longitudinal Vortex Generators
,”
Int. J. Heat Mass Transfer
,
53
(
15
), pp.
3023
3029
.
15.
Zhou
,
G.
, and
Ye
,
Q.
,
2012
, “
Experimental Investigations of Thermal and Flow Characteristics of Curved Trapezoidal Winglet Type Vortex Generators
,”
Appl. Therm. Eng.
,
37
, pp.
241
248
.
16.
Zhou
,
G.
, and
Feng
,
Z.
,
2014
, “
Experimental Investigations of Heat Transfer Enhancement by Plane and Curved Winglet Type Vortex Generators With Punched Holes
,”
Int. J. Therm. Sci.
,
78
, pp.
26
35
.
17.
Lu
,
G.
, and
Zhou
,
G.
,
2016
, “
Numerical Simulation on Performances of Plane and Curved Winglet–Pair Vortex Generators in a Rectangular Channel and Field Synergy Analysis
,”
Int. J. Therm. Sci.
,
109
, pp.
323
333
.
18.
Lu
,
G.
, and
Zhou
,
G.
,
2016
, “
Numerical Simulation on Performances of Plane and Curved Winglet Type Vortex Generator Pairs With Punched Holes
,”
Int. J. Heat Mass Transfer
,
102
, pp.
679
690
.
19.
Oneissi
,
M.
,
Habchi
,
C.
,
Russeil
,
S.
,
Bougeard
,
D.
, and
Lemenand
,
T.
,
2016
, “
Novel Design of Delta Winglet Pair Vortex Generator for Heat Transfer Enhancement
,”
Int. J. Therm. Sci.
,
109
, pp.
1
9
.
20.
Tang
,
L.
,
Chu
,
W.
,
Ahmed
,
N.
, and
Zeng
,
M.
,
2016
, “
A New Configuration of Winglet Longitudinal Vortex Generator to Enhance Heat Transfer in a Rectangular Channel
,”
Appl. Therm. Eng.
,
104
, pp.
74
84
.
21.
Min
,
C.
,
Qi
,
C.
,
Wang
,
E.
,
Tian
,
L.
, and
Qin
,
Y.
,
2012
, “
Numerical Investigation of Turbulent Flow and Heat Transfer in a Channel With Novel Longitudinal Vortex Generators
,”
Int. J. Heat Mass Transfer
,
55
(
23
), pp.
7268
7277
.
22.
Lemouedda
,
A.
,
Breuer
,
M.
,
Franz
,
E.
,
Botsch
,
T.
, and
Delgado
,
A.
,
2010
, “
Optimization of the Angle of Attack of Delta-Winglet Vortex Generators in a Plate-Fin-and-Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
53
(
23–24
), pp.
5386
5399
.
23.
Zeng
,
M.
,
Tang
,
L.
,
Lin
,
M.
, and
Wang
,
Q.
,
2010
, “
Optimization of Heat Exchangers With Vortex-Generator Fin by Taguchi Method
,”
Appl. Therm. Eng.
,
30
(
13
), pp.
1775
1783
.
24.
Jang
,
J.-Y.
,
Hsu
,
L.-F.
, and
Leu
,
J.-S.
,
2013
, “
Optimization of the Span Angle and Location of Vortex Generators in a Plate-Fin and Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
67
, pp.
432
444
.
25.
Tang
,
L.-H.
,
Tan
,
S.-C.
,
Gao
,
P.-Z.
, and
Zeng
,
M.
,
2016
, “
Parameters Optimization of Fin-and-Tube Heat Exchanger With a Novel Vortex Generator Fin by Taguchi Method
,”
Heat Transfer Eng.
,
37
(
3–4
), pp.
369
381
.
26.
Wu
,
X.
,
Liu
,
D.
,
Zhao
,
M.
,
Lu
,
Y.
, and
Song
,
X.
,
2016
, “
The Optimization of Fin-Tube Heat Exchanger With Longitudinal Vortex Generators Using Response Surface Approximation and Genetic Algorithm
,”
Heat Mass Transfer
,
52
(
9
), pp.
1871
1879
.
27.
Xie
,
G.
,
Sunden
,
B.
,
Wang
,
Q.
, and
Tang
,
L.
,
2009
, “
Performance Predictions of Laminar and Turbulent Heat Transfer and Fluid Flow of Heat Exchangers Having Large Tube-Diameter and Large Tube-Row by Artificial Neural Networks
,”
Int. J. Heat Mass Transfer
,
52
(
11
), pp.
2484
2497
.
28.
Colleoni
,
A.
,
Toutant
,
A.
,
Olalde
,
G.
, and
Foucaut
,
J. M.
,
2013
, “
Optimization of Winglet Vortex Generators Combined With Riblets for Wall/Fluid Heat Exchange Enhancement
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
1092
1100
.
29.
Kim
,
B. S.
,
Kwak
,
B. S.
,
Shin
,
S.
,
Lee
,
S.
,
Kim
,
K. M.
,
Jung
,
H.-I.
, and
Cho
,
H. H.
,
2011
, “
Optimization of Microscale Vortex Generators in a Microchannel Using Advanced Response Surface Method
,”
Int. J. Heat Mass Transfer
,
54
(
1
), pp.
118
125
.
30.
Beigzadeh
,
R.
,
Rahimi
,
M.
,
Parvizi
,
M.
, and
Eiamsa-ard
,
S.
,
2014
, “
Application of ANN and GA for the Prediction and Optimization of Thermal and Flow Characteristics in a Rectangular Channel Fitted With Twisted Tape Vortex Generators
,”
Numer. Heat Transfer, Part A: Appl.
,
65
(
2
), pp.
186
199
.
31.
Abdollahi
,
A.
, and
Shams
,
M.
,
2015
, “
Optimization of Shape and Angle of Attack of Winglet Vortex Generator in a Rectangular Channel for Heat Transfer Enhancement
,”
Appl. Therm. Eng.
,
81
, pp.
376
387
.
32.
Abdollahi
,
A.
, and
Shams
,
M.
,
2015
, “
Optimization of Heat Transfer Enhancement of Nanofluid in a Channel With Winglet Vortex Generator
,”
Appl. Therm. Eng.
,
91
, pp.
1116
1126
.
33.
Khan
,
T. A.
, and
Li
,
W.
,
2017
, “
Optimal Design of Plate-Fin Heat Exchanger by Combining Multi-Objective Algorithms
,”
Int. J. Heat Mass Transfer
,
108
(
Pt. B
), pp.
1560
1572
.
34.
Safikhani
,
H.
,
Abbassi
,
A.
,
Khalkhali
,
A.
, and
Kalteh
,
M.
,
2014
, “
Multi-Objective Optimization of Nanofluid Flow in Flat Tubes Using CFD, Artificial Neural Networks and Genetic Algorithms
,”
Adv. Powder Technol.
,
25
(
5
), pp.
1608
1617
.
35.
Salviano
,
L. O.
,
Dezan
,
D. J.
, and
Yanagihara
,
J. I.
,
2015
, “
Optimization of Winglet-Type Vortex Generator Positions and Angles in Plate-Fin Compact Heat Exchanger: Response Surface Methodology and Direct Optimization
,”
Int. J. Heat Mass Transfer
,
82
, pp.
373
387
.
36.
Sen
,
M.
, and
Yang
,
K.
,
2000
, “
Applications of Artificial Neural Networks and Genetic Algorithms in Thermal Engineering
,”
CRC Handbook of Thermal Engineering
, F. Kreith, ed., CRC Press, Boca Raton, FL, pp.
620
661
.
37.
Forrester, A. I. J., Sobester, A., and Keane, A. J.,
2008
,
Engineering Design Via Surrogate Modelling: A Practical Guide
,
Wiley
, Chichester, UK.
38.
Bejan
,
A.
, and
Kraus
,
A. D.
,
2003
,
Heat Transfer Handbook
, Vol.
1
,
Wiley
, Hoboken, NJ.
39.
Fiebig
,
M.
,
1998
, “
Vortices, Generators and Heat Transfer
,”
Chem. Eng. Res. Des.
,
76
(
2
), pp.
108
123
.
40.
Díaz
,
G.
,
Sen
,
M.
,
Yang
,
K. T.
, and
McClain
,
R. L.
,
1999
, “
Simulation of Heat Exchanger Performance by Artificial Neural Networks
,”
HVACR Res.
,
5
(
3
), pp.
195
208
.
41.
Dı´az
,
G.
,
Sen
,
M.
,
Yang
,
K. T.
, and
McClain
,
R. L.
,
2001
, “
Dynamic Prediction and Control of Heat Exchangers Using Artificial Neural Networks
,”
Int. J. Heat Mass Transfer
,
44
(
9
), pp.
1671
1679
.
42.
MathWorks, 2017, “MATLAB R2013b Help,” The MathWorks, Inc., Natick, MA.
You do not currently have access to this content.