The present work considers the application of the generalized integral transform technique (GITT) in the solution of a class of linear or nonlinear convection–diffusion problems, by fully or partially incorporating the convective effects into the chosen eigenvalue problem that forms the basis of the proposed eigenfunction expansion. The aim is to improve convergence behavior of the eigenfunction expansions, especially in the case of formulations with significant convective effects, by simultaneously accounting for the relative importance of convective and diffusive effects within the eigenfunctions themselves, in comparison against the more traditional GITT solution path, which adopts a purely diffusive eigenvalue problem, and the convective effects are fully incorporated into the problem source term. After identifying a characteristic convective operator, and through a straightforward algebraic transformation of the original convection–diffusion problem, basically by redefining the coefficients associated with the transient and diffusive terms, the characteristic convective term is merged into a generalized diffusion operator with a space-variable diffusion coefficient. The generalized diffusion problem then naturally leads to the eigenvalue problem to be chosen in proposing the eigenfunction expansion for the linear situation, as well as for the appropriate linearized version in the case of a nonlinear application. The resulting eigenvalue problem with space variable coefficients is then solved through the GITT itself, yielding the corresponding algebraic eigenvalue problem, upon selection of a simple auxiliary eigenvalue problem of known analytical solution. The GITT is also employed in the solution of the generalized diffusion problem, and the resulting transformed ordinary differential equations (ODE) system is solved either analytically, for the linear case, or numerically, for the general nonlinear formulation. The developed methodology is illustrated for linear and nonlinear applications, both in one-dimensional (1D) and multidimensional formulations, as represented by test cases based on Burgers' equation.

References

References
1.
Koshlyakov
,
N. S.
,
1936
,
Fundamental Differential Equations of Mathematical Physics
, ONTI,
Moscow, Russia
.
2.
Mikhailov
,
M. D.
,
1967
,
Nonstationary Temperature Fields in Skin
,
Energia
,
Moscow, Russia
.
3.
Luikov
,
A. V.
,
1968
,
Analytical Heat Diffusion Theory
,
Academic Press
,
New York
.
4.
Ozisik
,
M. N.
,
1968
,
Boundary Value Problems of Heat Conduction
,
International Textbooks
, Scranton, PA.
5.
Ozisik
,
M. N.
,
1980
,
Heat Conduction
,
Wiley
,
New York
.
6.
Mikhailov
,
M. D.
, and
Özisik
,
M. N.
,
1984/1994
,
Unified Analysis and Solutions of Heat and Mass Diffusion
,
Wiley/Dover Publications
,
New York
/Mineola, NY.
7.
Cotta
,
R. M.
,
1990
, “
Hybrid Numerical-Analytical Approach to Nonlinear Diffusion Problems
,”
Numer. Heat Transfer, Part B
,
17
(
2
), pp.
217
226
.
8.
Cotta
,
R. M.
,
1993
,
Integral Transforms in Computational Heat and Fluid Flow
,
CRC Press
,
Boca Raton, FL
.
9.
Cotta
,
R. M.
,
1994a
, “
The Integral Transform Method in Computational Heat and Fluid Flow
,”
Tenth International Heat Transfer Conference
, Brighton, UK, Aug. 14–18, pp.
43
60
.https://www.tib.eu/en/search/id/tema%3ATEMAM95034600565/The-integral-transform-method-in-computational/?tx_tibsearch_search%5Bsearchspace%5D=tn
10.
Cotta
,
R. M.
,
1994b
, “
Benchmark Results in Computational Heat and Fluid Flow—The Integral Transform Method
,”
Int. J. Heat Mass Transfer
,
37
(Suppl. 1), pp.
381
394
.
11.
Cotta
,
R. M.
, and
Mikhailov
,
M. D.
,
1997
,
Heat Conduction: Lumped Analysis, Integral Transforms, Symbolic Computation
,
Wiley-Interscience
,
Chichester, UK
.
12.
Cotta
,
R. M.
, ed.,
1998
,
The Integral Transform Method in Thermal and Fluids Sciences and Engineering
,
Begell House
,
New York
.
13.
Cotta
,
R. M.
, and
Mikhailov
,
M. D.
,
2006
, “
Hybrid Methods and Symbolic Computations
,”
Handbook of Numerical Heat Transfer
,
2nd ed.
,
W. J.
Minkowycz
,
E. M.
Sparrow
, and
J. Y.
Murthy
, eds.,
Wiley
,
New York
, Chap. 16.
14.
Cotta
,
R. M.
,
Knupp
,
D. C.
, and
Naveira-Cotta
,
C. P.
,
2016
,
Analytical Heat and Fluid Flow in Microchannels and Microsystems
(Mechanical Engineering Series),
Springer-Verlag
,
Berlin
.
15.
Mikhailov
,
M. D.
, and
Cotta
,
R. M.
,
1994
, “
Integral Transform Method for Eigenvalue Problems
,”
Commun. Numer. Methods Eng.
,
10
(
10
), pp.
827
835
.
16.
Sphaier
,
L. A.
, and
Cotta
,
R. M.
,
2000
, “
Integral Transform Analysis of Multidimensional Eigenvalue Problems Within Irregular Domains
,”
Numer. Heat Transfer, Part B
,
38
(
2
), pp.
157
175
.http://dx.doi.org/10.1080/104077900750034652
17.
Naveira-Cotta
,
C. P.
,
Cotta
,
R. M.
,
Orlande
,
H. R. B.
, and
Fudym
,
O.
,
2009
, “
Eigenfunction Expansions for Transient Diffusion in Heterogeneous Media
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
5029
5039
.
18.
Serfaty
,
R.
, and
Cotta
,
R. M.
,
1992
, “
Hybrid Analysis of Transient Nonlinear Convection-Diffusion Problems
,”
Int. J. Numer. Methods Heat Fluid Flow
,
2
(
1
), pp.
55
62
.
19.
Carvalho
,
T. M. B.
,
Cotta
,
R. M.
, and
Mikhailov
,
M. D.
,
1993
, “
Flow Development in the Entrance Regions of Ducts
,”
Commun. Numer. Methods Eng.
,
9
(
6
), pp.
503
509
.
20.
Almeida
,
A. R.
, and
Cotta
,
R. M.
,
1995
, “
Integral Transform Methodology for Convection-Diffusion Problems in Petroleum Reservoir Engineering
,”
Int. J. Heat Mass Transfer
,
38
(
18
), pp.
3359
3367
.
21.
Gondim
,
R. R.
,
Macedo
,
E. N.
, and
Cotta
,
R. M.
,
2007
, “
Hybrid Solution for Transient Internal Convection With Axial Diffusion: Integral Transforms With Local Instantaneous Filtering
,”
Int. J. Numer. Methods Heat Fluid Flow
,
17
(
4
), pp.
405
417
.
22.
Almeida
,
G. L.
,
Pimentel
,
L. C. G.
, and
Cotta
,
R. M.
,
2008
, “
Integral Transform Solutions for Atmospheric Pollutant Dispersion
,”
Environ. Model. Assess.
,
13
(
1
), pp.
53
65
.
23.
Cotta
,
R. M.
, and
Gerk
,
J. E. V.
,
1994
, “
Mixed Finite Difference/Integral Transform Approach for Parabolic-Hyperbolic Problems in Transient Forced Convection
,”
Numer. Heat Transfer Part B
,
25
(
4
), pp.
433
448
.
24.
Castellões
,
F. V.
, and
Cotta
,
R. M.
,
2006
, “
Analysis of Transient and Periodic Convection in Microchannels Via Integral Transforms
,”
Prog. Comput. Fluid Dyn.
,
6
(
6
), pp.
321
326
.
25.
Cotta
,
R. M.
,
Knupp
,
D. C.
,
Naveira-Cotta
,
C. P.
,
Sphaier
,
L. A.
, and
Quaresma
,
J. N. N.
,
2014
, “
The Unified Integral Transforms (UNIT) Algorithm With Total and Partial Transformation
,”
Comput. Therm. Sci.
,
6
(
6
), pp.
507
524
.
26.
Knupp
,
D. C.
,
Cotta
,
R. M.
,
Naveira-Cotta
,
C. P.
, and
Kakaç
,
S.
,
2015
, “
Transient Conjugated Heat Transfer in Microchannels: Integral Transforms With Single Domain Formulation
,”
Int. J. Therm. Sci.
,
88
, pp.
248
257
.
27.
Knupp
,
D. C.
,
Cotta
,
R. M.
, and
Naveira-Cotta
,
C. P.
,
2015
, “
Fluid Flow and Conjugated Heat Transfer in Arbitrarily Shaped Channels Via Single Domain Formulation and Integral Transforms
,”
Int. J. Heat Mass Transfer
,
82
, pp.
479
489
.
28.
Wolfram
,
S.
,
2015
, “
The Mathematica Book
,” Wolfram Media, Champaign, IL.
29.
Cotta
,
R. M.
,
Naveira-Cotta
,
C. P.
, and
Knupp
,
D. C.
,
2016
, “
Nonlinear Eigenvalue Problem in the Integral Transforms Solution of Convection-Diffusion With Nonlinear Boundary Conditions
,”
Int. J. Numer. Methods Heat Fluid Flow
,
26
(
3&4
), pp. 767–789.https://doi.org/10.1108/HFF-08-2015-0309
30.
Mikhailov
,
M. D.
, and
Ozisik
,
M. N.
,
1981
, “
On General Solution of Heat Conduction in an Anisotropic Medium
,”
Lett. Heat Mass Transfer
,
8
(
4
), pp.
329
335
.
31.
Cotta
,
R. M.
,
Knupp
,
D. C.
,
Naveira-Cotta
,
C. P.
,
Sphaier
,
L. A.
, and
Quaresma
,
J. N. N.
,
2013
, “
Unified Integral Transforms Algorithm for Solving Multidimensional Nonlinear Convection-Diffusion Problems
,”
Numer. Heat Transfer, Part A
,
63
(
11
), pp.
840
866
.http://dx.doi.org/10.1080/10407782.2013.756763
You do not currently have access to this content.