In this study, two-dimensional (2D) numerical simulations of liquid slip flows in parallel-plate microchannels have been performed to obtain heat transfer characteristics and entropy generation rate under asymmetric heating conditions. Heat transfer analysis has been conducted along with second-law analysis through utilizing temperature-dependent thermophysical properties. The results indicate that temperature-dependent thermophysical properties have a positive effect on convective heat transfer and entropy generation. Nusselt numbers of the upper and lower plates and global entropy generation rates are significantly affected by slip parameter and heat flux ratio. It is shown that Nusselt number of the lower plate may have very large but finite values at a specific heat flux ratio. This finding resembles to analytical solutions, where singularities leading to an infinite Nusselt number exist.

References

References
1.
Shojaeian
,
M.
, and
Dibaji
,
S. A. R.
,
2010
, “
Three-Dimensional Numerical Simulation of the Slip Flow Through Triangular Microchannels
,”
Int. Commun. Heat Mass Transfer
,
37
(
3
), pp.
324
329
.
2.
Shams
,
M.
,
Shojaeian
,
M.
,
Aghanajafi
,
C.
, and
Dibaji
,
S. A. R.
,
2009
, “
Numerical Simulation of Slip Flow Through Rhombus Microchannels
,”
Int. Commun. Heat Mass Transfer
,
36
(
10
), pp.
1075
1081
.
3.
Aydın
,
O.
, and
Avcı
,
M.
,
2006
, “
Heat and Fluid Flow Characteristics of Gases in Micropipes
,”
Int. J. Heat Mass Transfer
,
49
(
9–10
), pp.
1723
1730
.
4.
Cao
,
B.
,
Chen
,
G. W.
, and
Yuan
,
Q.
,
2005
, “
Fully Developed Laminar Flow and Heat Transfer in Smooth Trapezoidal Microchannel
,”
Int. Commun. Heat Mass Transfer
,
32
(
9
), pp.
1211
1220
.
5.
Hooman
,
K.
,
2008
, “
A Superposition Approach to Study Slip-Flow Forced Convection in Straight Microchannels of Uniform But Arbitrary Cross-Section
,”
Int. J. Heat Mass Transfer
,
51
(
15–16
), pp.
3753
3762
.
6.
Kuddusi
,
L.
, and
Çetegen
,
E.
,
2009
, “
Thermal and Hydrodynamic Analysis of Gaseous Flow in Trapezoidal Silicon Microchannels
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
353
362
.
7.
Renksizbulut
,
M.
,
Niazmand
,
H.
, and
Tercan
,
G.
,
2006
, “
Slip-Flow and Heat Transfer in Rectangular Microchannels With Constant Wall Temperature
,”
Int. J. Therm. Sci.
,
45
(
9
), pp.
870
881
.
8.
Tretheway
,
D. C.
, and
Meinhart
,
C. D.
,
2004
, “
A Generating Mechanism for Apparent Fluid Slip in Hydrophobic Microchannels
,”
Phys. Fluids
,
16
(
5
), pp.
1509
1515
.
9.
Chun
,
M.-S.
, and
Lee
,
S.
,
2005
, “
Flow Imaging of Dilute Colloidal Suspension in PDMS-Based Microfluidic Chip Using Fluorescence Microscopy
,”
Colloids Surf., A
,
267
(
1–3
), pp.
86
94
.
10.
Byun
,
D.
,
Kim
,
J.
,
Ko
,
H. S.
, and
Park
,
H. C.
,
2008
, “
Direct Measurement of Slip Flows in Superhydrophobic Microchannels With Transverse Grooves
,”
Phys. Fluids
,
20
(
11
), p.
113601
.
11.
Ho
,
T. A.
,
Papavassiliou
,
D. V.
,
Lee
,
L. L.
, and
Striolo
,
A.
,
2011
, “
Liquid Water Can Slip on a Hydrophilic Surface
,”
Proc. Natl. Acad. Sci. U.S.A.
,
108
(
39
), pp.
16170
16175
.
12.
Joseph
,
P.
, and
Tabeling
,
P.
,
2005
, “
Direct Measurement of the Apparent Slip Length
,”
Phys. Rev. E
,
71
(
3
), p.
035303
.
13.
Celata
,
G. P.
,
Cumo
,
M.
,
McPhail
,
S.
, and
Zummo
,
G.
,
2006
, “
Characterization of Fluid Dynamic Behaviour and Channel Wall Effects in Microtube
,”
Int. J. Heat Fluid Flow
,
27
(
1
), pp.
135
143
.
14.
Rands
,
C.
,
Webb
,
B. W.
, and
Maynes
,
D.
,
2006
, “
Characterization of Transition to Turbulence in Microchannels
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
2924
2930
.
15.
El-Genk
,
M. S.
, and
Yang
,
I.-H.
,
2008
, “
Friction Numbers and Viscous Dissipation Heating for Laminar Flows of Water in Microtubes
,”
ASME J. Heat Transfer
,
130
(
8
), p.
082405
.
16.
Tretheway
,
D. C.
, and
Meinhart
,
C. D.
,
2002
, “
Apparent Fluid Slip at Hydrophobic Microchannel Walls
,”
Phys. Fluids
,
14
(
3
), pp.
L9
L12
.
17.
Celata
,
G. P.
,
Cumo
,
M.
, and
Zummo
,
G.
,
2004
, “
Thermal–Hydraulic Characteristics of Single-Phase Flow in Capillary Pipes
,”
Exp. Therm. Fluid Sci.
,
28
(
2–3
), pp.
87
95
.
18.
Harms
,
T. M.
,
Kazmierczak
,
M. J.
, and
Gerner
,
F. M.
,
1999
, “
Developing Convective Heat Transfer in Deep Rectangular Microchannels
,”
Int. J. Heat Fluid Flow
,
20
(
2
), pp.
149
157
.
19.
Morini
,
G. L.
,
Lorenzini
,
M.
,
Salvigni
,
S.
, and
Celata
,
G. P.
,
2009
, “
Experimental Analysis of Microconvective Heat Transfer in the Laminar and Transitional Regions
,”
Exp. Heat Transfer
,
23
(
1
), pp.
73
93
.
20.
Peng
,
X. F.
, and
Peterson
,
G. P.
,
1996
, “
Convective Heat Transfer and Flow Friction for Water Flow in Microchannel Structures
,”
Int. J. Heat Mass Transfer
,
39
(
12
), pp.
2599
2608
.
21.
Rosengarten
,
G.
,
Cooper-White
,
J.
, and
Metcalfe
,
G.
,
2006
, “
Experimental and Analytical Study of the Effect of Contact Angle on Liquid Convective Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
,
49
(
21–22
), pp.
4161
4170
.
22.
Ngoma
,
G. D.
, and
Erchiqui
,
F.
,
2007
, “
Heat Flux and Slip Effects on Liquid Flow in a Microchannel
,”
Int. J. Therm. Sci.
,
46
(
11
), pp.
1076
1083
.
23.
Morini
,
G. L.
,
2005
, “
Viscous Heating in Liquid Flows in Micro-Channels
,”
Int. J. Heat Mass Transfer
,
48
(
17
), pp.
3637
3647
.
24.
Shojaeian
,
M.
, and
Koşar
,
A.
,
2014
, “
Convective Heat Transfer and Entropy Generation Analysis on Newtonian and Non-Newtonian Fluid Flows Between Parallel-Plates Under Slip Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
70
, pp.
664
673
.
25.
Shojaeian
,
M.
, and
Shojaee
,
S. M. N.
,
2013
, “
Viscous Dissipation Effect on Heat Transfer Characteristics of Mixed Electromagnetic/Pressure Driven Liquid Flows Inside Micropumps
,”
Korean J. Chem. Eng.
,
30
(
4
), pp.
823
830
.
26.
Kong
,
K. S.
, and
Ooi
,
K. T.
,
2013
, “
A Numerical and Experimental Investigation on Microscale Heat Transfer Effect in the Combined Entry Region in Macro Geometries
,”
Int. J. Therm. Sci.
,
68
, pp.
8
19
.
27.
Qu
,
W.
, and
Mudawar
,
I.
,
2002
, “
Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Channel Heat Sink
,”
Int. J. Heat Mass Transfer
,
45
(
12
), pp.
2549
2565
.
28.
Qu
,
W.
,
Mudawar
,
I.
,
Lee
,
S.-Y.
, and
Wereley
,
S. T.
,
2006
, “
Experimental and Computational Investigation of Flow Development and Pressure Drop in a Rectangular Micro-Channel
,”
ASME J. Electron. Packag.
,
128
(
1
), pp.
1
9
.
29.
Mohammed
,
H. A.
,
Gunnasegaran
,
P.
, and
Shuaib
,
N. H.
,
2011
, “
Numerical Simulation of Heat Transfer Enhancement in Wavy Microchannel Heat Sink
,”
Int. Commun. Heat Mass Transfer
,
38
(
1
), pp.
63
68
.
30.
Mansoor
,
M. M.
,
Wong
,
K.-C.
, and
Siddique
,
M.
,
2012
, “
Numerical Investigation of Fluid Flow and Heat Transfer Under High Heat Flux Using Rectangular Micro-Channels
,”
Int. Commun. Heat Mass Transfer
,
39
(
2
), pp.
291
297
.
31.
Xie
,
X. L.
,
Liu
,
Z. J.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2009
, “
Numerical Study of Laminar Heat Transfer and Pressure Drop Characteristics in a Water-Cooled Minichannel Heat Sink
,”
Appl. Therm. Eng.
,
29
(
1
), pp.
64
74
.
32.
Shojaeian
,
M.
, and
Koşar
,
A.
,
2015
, “
Pool Boiling and Flow Boiling on Micro- and Nanostructured Surfaces
,”
Exp. Therm. Fluid Sci.
,
63
, pp.
45
73
.
33.
Toh
,
K.
,
Chen
,
X.
, and
Chai
,
J.
,
2002
, “
Numerical Computation of Fluid Flow and Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
,
45
(
26
), pp.
5133
5141
.
34.
Li
,
Z.
,
Huai
,
X.
,
Tao
,
Y.
, and
Chen
,
H.
,
2007
, “
Effects of Thermal Property Variations on the Liquid Flow and Heat Transfer in Microchannel Heat Sinks
,”
Appl. Therm. Eng.
,
27
(
17–18
), pp.
2803
2814
.
35.
Lee
,
P.-S.
,
Garimella
,
S. V.
, and
Liu
,
D.
,
2005
, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1688
1704
.
36.
Herwig
,
H.
, and
Mahulikar
,
S. P.
,
2006
, “
Variable Property Effects in Single-Phase Incompressible Flows Through Microchannels
,”
Int. J. Therm. Sci.
,
45
(
10
), pp.
977
981
.
37.
Mahulikar
,
S. P.
, and
Herwig
,
H.
,
2005
, “
Theoretical Investigation of Scaling Effects From Macro-to-Microscale Convection Due to Variations in Incompressible Fluid Properties
,”
Appl. Phys. Lett.
,
86
(
1
), p.
014105
.
38.
Gulhane
,
N. P.
, and
Mahulikar
,
S. P.
,
2011
, “
Numerical Study of Microconvective Water-Flow Characteristics With Variations in Properties
,”
Nanoscale Microscale Thermophys. Eng.
,
15
(
1
), pp.
28
47
.
39.
Gulhane
,
N. P.
, and
Mahulikar
,
S. P.
,
2012
, “
Numerical Investigation on Laminar Microconvective Liquid Flow With Entrance Effect and Graetz Problem Due to Variation in Thermal Properties
,”
Heat Transfer Eng.
,
33
(
8
), pp.
748
761
.
40.
Shojaeian
,
M.
,
Yildiz
,
M.
, and
Koşar
,
A.
,
2015
, “
Convective Heat Transfer and Second Law Analysis of Non-Newtonian Fluid Flows With Variable Thermophysical Properties in Circular Channels
,”
Int. Commun. Heat Mass Transfer
,
60
, pp.
21
31
.
41.
Guang
,
W. Z.
, and
Xueyong
,
M.
,
2012
, “
A Review on Slip Models for Gas Microflows Linearized Boltzmann Equation
,”
Microfluid. Nanofluid.
,
13
(
6
), pp.
845
882
.
42.
Cao
,
B.
,
Sun
,
J.
,
Chen
,
M.
, and
Guo
,
Z.
,
2009
, “
Molecular Momentum Transport at Fluid-Solid Interfaces in MEMS/NEMS: A Review
,”
Int. J. Mol. Sci.
,
10
(
11
), pp.
4638
4706
.
43.
Shih
,
Y.-P.
,
Huang
,
C.-C.
, and
Tsay
,
S.-Y.
,
1995
, “
Extended Leveque Solution for Laminar Heat Transfer to Power-Law Fluids in Pipes With Wall Slip
,”
Int. J. Heat Mass Transfer
,
38
(
3
), pp.
403
408
.
44.
Tunc
,
G.
, and
Bayazitoglu
,
Y.
,
2002
, “
Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
45
(
4
), pp.
765
773
.
45.
Al-Shemmeri
,
T.
,
2012
,
Engineering Fluid Mechanics
,
Bookboon
,
London
.
46.
Ramires
,
M. L. V.
,
Nieto de Castro
,
C. A.
,
Nagasaka
,
Y.
,
Nagashima
,
A.
,
Assael
,
M. J.
, and
Wakeham
,
W. A.
,
1995
, “
Standard Reference Data for the Thermal Conductivity of Water
,”
J. Phys. Chem. Ref. Data
,
24
(
3
), pp.
1377
1381
.
47.
Shojaeian
,
M.
,
Yildiz
,
M.
, and
Koşar
,
A.
,
2014
, “
Heat Transfer Characteristics of Plug Flows With Temperature-Jump Boundary Conditions in Parallel-Plate Channels and Concentric Annuli
,”
Int. J. Therm. Sci.
,
84
, pp.
252
259
.
48.
Shojaeian
,
M.
, and
Shojaeian
,
M.
,
2011
, “
Analytical Solution of Mixed Electromagnetic/Pressure Driven Gaseous Flows in Microchannels
,”
Microfluid. Nanofluid.
,
12
(
1–4
), pp.
553
564
.
49.
Shojaeian
,
M.
,
Zamanian
,
R.
, and
Koşar
,
A.
,
2014
, “
The Effect of Radiative Heat Transfer on Slip Flow Through Parallel-Plate Microchannels
,”
15th International Heat Transfer Conference
(
IHTC
), Kyoto, Japan, Aug. 10–15, pp. 3165–3177.
50.
Bejan
,
A.
,
1995
,
Entropy Generation Minimization: The Method of Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes
,
CRC Press
,
Boca Raton, FL
.
51.
Bejan
,
A.
,
1982
,
Entropy Generation Through Heat and Fluid Flow
,
Wiley
,
New York
.
You do not currently have access to this content.