Onboard liquid cooling of electronic devices is demonstrated with liquid delivered externally to the point of heat removal through a conformal encapsulation. The encapsulation creates a flat microgap above the integrated circuit (IC) and delivers a uniform inlet coolant flow over the device. The coolant is Novec™ 7200, and the electronics are simulated with a resistance heater on a 1:1 scale. Thermal performance is demonstrated at power densities of ∼1 kW/cm3 in the microgap. Parameters investigated are pressure drop, average device temperature, heat transfer coefficient, and coefficient of performance (COP). Nusselt numbers for gap sizes of 0.25, 0.5, and 0.75 mm are reduced to a dimensionless correlation. With low coolant inlet subcooling, two-phase heat transfer is seen at all mass flows. Device temperatures reach 95 °C for power dissipation of 50–80 W (0.67–1.08 kW/cm3) depending on coolant flow for a gap of 0.5 mm. Coefficients of performance of ∼100 to 70,000 are determined via measured pressure drop and demonstrate a low pumping penalty at the device level within the range of power and coolant flow considered. The encapsulation with microgap flow boiling provides a means for use of higher power central processing unit and graphics processing unit devices and thereby enables higher computing performance, for example, in embedded airborne computers.

References

References
1.
Kandlikar
,
S.
,
Garimella
,
S.
,
King
,
D.
,
Colin
,
S.
, and
King
,
M.
,
2013
,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
2nd ed.
,
Butterworth-Heinemann
,
Waltham, MA
.
2.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts
(Advances in Heat Transfer), Suppl. 1,
Academic Press
,
New York
.
3.
Thome
,
J. R.
,
2004
, “
Boiling in Microchannels: A Review of Experiment and Theory
,”
Int. J. Heat Mass Transfer
,
25
(
2
), pp.
128
139
.
4.
Thome
,
J. R.
,
2006
, “
State-of-the-Art Overview of Boiling and Two-Phase Flows in Microchannels
,”
Heat Transfer Eng.
,
27
(
9
), pp.
4
19
.
5.
Yarin
,
L. O.
,
Mosyak
,
A.
, and
Hetsroni
,
G.
,
2009
,
Fluid Flow, Heat Transfer and Boiling in Micro-Channels
,
Springer
,
Berlin
.
6.
Saha
,
S. K.
, and
Celata
,
G. P.
,
2011
, “
Thermofluid Dynamics of Boiling in Microchannels—Part I
,”
Advances in Heat Transfer
, Vol.
43
,
Y. I.
Cho
and
G. A.
Greene
, eds.,
Academic Press
,
San Diego, CA
, pp.
77
159
.
7.
Kandlikar
,
S.
,
2012
, “
Thermofluid Dynamics of Boiling in Microchannels—Part II
,”
Advances in Heat Transfer
, Vol.
43
,
Y. I.
Cho
and
G. A.
Greene
, eds.,
Academic Press
,
San Diego, CA
, pp.
159
208
.
8.
Kandlikar
,
S. G.
,
2012
, “
History, Advances, and Challenges in Liquid Flow and Flow Boiling Heat Transfer in Microchannels: A Critical Review
,”
ASME J. Heat Transfer
,
134
(
3
), p.
034001
.
9.
Lagus
,
T. P.
, and
Kulacki
,
F. A.
,
2012
, “
Two-Phase Heat Transfer and Bubble Characteristics in a Microchannel Array
,”
ASME J. Heat Transfer
,
134
(
7
), p.
071502
.
10.
Thome
,
J. R.
,
Dupont
,
V.
, and
Jacobi
,
A. M.
,
2004
, “
Heat Transfer Model for Evaporation in Microchannels—Part I: Presentation of the Model
,”
Int. J. Heat Mass Transfer
,
47
(
14
), pp.
3375
3385
.
11.
Dupont
,
V.
,
Thome
,
J. R.
, and
Jacobi
,
A. M.
,
2004
, “
Heat Transfer Model for Evaporation in Microchannels—Part II: Comparison With the Database
,”
Int. J. Heat Mass Transfer
,
47
(
14
), pp.
3387
3401
.
12.
Szczukiewicz
,
S.
,
Magnini
,
M.
, and
Thome
,
J. R.
,
2014
, “
Proposed Models, Ongoing Experiments, and Latest Numerical Simulations of Microchannel Two-Phase Flow Boiling
,”
Int. J. Multiphase Flow
,
59
, pp.
84
101
.
13.
Saha
,
S. K.
and
Celata
,
G. P.
,
2015
,
Critical Heat Flux in Flow Boiling in Microchannels
(Springer Briefs in Thermal Engineering and Applied Science),
Springer
,
New York
.
14.
Bar-Cohen
,
A.
,
Geisler
,
K. J. L.
, and
Rahim
,
E.
,
2008
, “
Pool and Flow Boiling in Narrow Gaps—Application to 3D Chip Stacks
,”
Fifth European Thermal Sciences Conference
, G. G. M. Stoffels, T. H. van der Meer, and A. A. van Steenhoven, eds., Eindhoven, The Netherlands, May 18–22.http://scholar.google.com/citations?view_op=view_citation&hl=en&user=68-8iI8AAAAJ&citation_for_view=68-8iI8AAAAJ:IjCSPb-OGe4C
15.
Bar-Cohen
,
A.
, and
Rahim
,
E.
,
2009
, “
Modeling and Prediction of Two-Phase Microgap Channel Heat Transfer Characteristics
,”
Heat Transfer Eng.
,
30
(
8
), pp.
601
625
.
16.
Rahim
,
E.
,
Bar-Cohen
,
A.
, and
Ali
,
I. A.
,
2012
, “
Two-Phase Microgap Cooling of a Thermally-Simulated Microprocessor Chip
,”
13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), San Diego, CA, May 30–June 1, pp.
1090
1105
.
17.
Bar-Cohen
,
A.
,
Sheehan
,
J. R.
, and
Rahim
,
E.
,
2012
, “
Two-Phase Thermal Transport in Microgap Channels—Theory, Experimental Results and Predictive Relations
,”
Microgravity Sci. Technol.
,
24
(
1
), pp.
1
15
.
18.
Alam
,
T.
,
Lee
,
P. S.
, and
Jin
,
L.-W.
,
2014
,
Flow Boiling in Microgap Channels: Experiment, Visualization and Analysis
(Springer Briefs in Thermal Engineering and Applied Science),
F. A.
Kulacki
, ed.,
Springer
,
New York
.
19.
Janssen
,
D. D.
,
Dixon
,
J. M.
,
Young
,
S. J.
, and
Kulacki
,
F. A.
,
2013
, “
Flow Boiling in Short Narrow Gap Channels
,”
ASME
Paper No. HT2013-17437.
20.
Young
,
S. J.
,
Kulacki
,
F. A.
,
Janssen
,
D. D.
, and
Dixon
,
J. M.
,
2013
, “
Advanced Electronics Cooling Technology (AECT)
,” DARPA/MTO, Arlington, TX, Contract No. N66001-11-C-4113.
21.
Janssen
,
D.
,
Dixon
,
J. M.
,
Young
,
S. J.
, and
Kulacki
,
F. A.
,
2015
, “
Cooling Multiple in Line Chip Pairs Via Flow Boiling
,”
ASME J. Heat Transfer
,
137
(
11
), p.
111501
.
22.
Solovitz
,
S. A.
, and
Mainka
,
J.
,
2011
, “
Manifold Design for Micro-Channel Cooling With Uniform Flow Distribution
,”
ASME J. Fluids Eng.
,
133
(
5
), p.
051103
.
23.
Cornwell
,
K.
, and
Kew
,
P. A.
,
1993
, “
Boiling in Small Parallel Channels
,”
Energy Efficiency in Process Technology
,
P. A.
Pilavachi
, ed.,
Elsevier Applied Science, London
, pp.
624
638
.
You do not currently have access to this content.