A simple approach is developed to obtain a multiscale network of heat conducting by filling spherical alumina (S-Al2O3) and graphene nanoplatelets (GnPs) into silicone rubber (SR). This unique structure effectively minimizes the thermal contact resistance between fillers and matrix. The physical properties of the composites are characterized by thermal conductivity, density, and tensile strength. A high thermal conductivity of 3.37 Wm−1 K−1 has been achieved, which is 47.1% higher than the single filler at the same loading. A strong and obvious synergistic effect has been observed as S-Al2O3 and GnPs filled into silicone rubber matrix. It is interesting that the composites with GnPs have the lower density (2.62 g/cm3, reduced by 6%) and the superior tensile performance, compared to silicone rubber composite with neat S-Al2O3. The composites have the potential applications in heat dissipation of light-emitting diode.

References

1.
Kemaloglu
,
S.
,
Ozkoc
,
G.
, and
Aytac
,
A.
,
2010
, “
Properties of Thermally Conductive Micro and Nano Size Boron Nitride Reinforced Silicon Rubber Composites
,”
Thermochim. Acta
,
499
(
1
), pp.
40
47
.
2.
Hou
,
G.
,
Cheng
,
B.
,
Ding
,
F.
,
Yao
,
M.
,
Hu
,
P.
, and
Yuan
,
F.
,
2015
, “
Synthesis of Uniform α-Si3N4 Nanospheres by RF Induction Thermal Plasma and Their Application in High Thermal Conductive Nanocomposites
,”
Appl. Mater. Interfaces
,
7
(
4
), pp.
2873
2881
.
3.
Kamseu
,
E.
,
Kamseu
,
Z.
,
Ali
,
B.
,
Zekeng
,
S.
,
Melo
,
U.
,
Rossignol
,
S.
, and
Leonelli
,
C.
,
2015
, “
Cumulative Pore Volume, Pore Size Distribution and Phases Percolation in Porous Inorganic Polymer Composite: Relation Microstructure and Effective Thermal Conductivity
,”
Energy Build.
,
88
, pp.
45
56
.
4.
Gao
,
B. Z.
,
Xu
,
J. Z.
,
Peng
,
J. J.
,
Kang
,
F. Y.
,
Du
,
H. D.
,
Li
,
J.
,
Chiang
,
S. W.
,
Xu
,
C. J.
,
Hu
,
N.
, and
Ning
,
X. S.
,
2015
, “
Experimental and Theoretical Studies of Effective Thermal Conductivity of Composites Made of Silicone Rubber and Al2O3 Particles
,”
Thermochim. Acta
,
614
, pp.
1
8
.
5.
Yu
,
H.
,
Heider
,
D.
, and
Advani
,
S.
,
2015
, “
Role of In-Plane Stacking Sequence on Transverse Effective Thermal Conductivity of Unidirectional Composite Laminates
,”
Int. J. Heat Mass Transfer
,
85
, pp.
897
903
.
6.
Chiu
,
H. T.
, and
Wu
,
J. H.
,
2005
, “
Conductive Effect of an Electronic/Ionic Complex Conductivity Modifier for Silicone Elastomers
,”
J. Appl. Polym. Sci.
,
97
(
3
), pp.
711
720
.
7.
Pradhan
,
B.
,
Srivastava
,
S. K.
,
Ananthakrishnan
,
R.
, and
Saxena
,
A.
,
2011
, “
Preparation and Characterization of Exfoliated Layered Double Hydroxide/Silicone Rubber Nanocomposites
,”
J. Appl. Polym. Sci.
,
119
(
1
), pp.
343
351
.
8.
Wang
,
Q.
,
Gao
,
W.
, and
Xie
,
Z. M.
,
2003
, “
Highly Thermally Conductive Room-Temperature-Vulcanized Silicone Rubber and Silicone Grease
,”
J. Appl. Polym. Sci.
,
89
(
9
), pp.
2397
2399
.
9.
Song
,
Y. Z.
,
Yu
,
J. H.
,
Yu
,
L. H.
,
Alam
,
F. E.
,
Dai
,
W.
,
Li
,
C. Y.
, and
Jiang
,
N.
,
2015
, “
Enhancing the Thermal, Electrical, and Mechanical Properties of Silicone Rubber by Addition of Graphene Nanoplatelets
,”
Mater. Des.
,
88
, pp.
950
957
.
10.
Mu
,
Q. H.
,
Feng
,
S. Y.
, and
Diao
,
G. Z.
,
2007
, “
Thermal Conductivity of Silicone Rubber Filled With ZnO
,”
Polym. Compos.
,
28
(
2
), pp.
125
130
.
11.
Sim
,
L. C.
,
Ramanan
,
S. R.
,
Ismail
,
H.
,
Seetharamu
,
K. N.
, and
Goh
,
T. J.
,
2005
, “
Thermal Characterization of Al2O3 and ZnO Reinforced Silicone Rubber as Thermal Pads for Heat Dissipation Purposes
,”
Thermochim. Acta
,
430
(
1–2
), pp.
155
165
.
12.
Meyer
,
L.
,
Jayaram
,
S.
, and
Cherney
,
E. A.
,
2004
, “
Thermal Conductivity of Filled Silicone Rubber and Its Relationship to Erosion Resistance in the Inclined Plane Test
,”
IEEE Trans. Dielectr. Electr. Insul.
,
11
(
4
), pp.
620
630
.
13.
Mu
,
Q. H.
, and
Feng
,
S. Y.
,
2007
, “
Thermal Conductivity of Graphite/Silicone Rubber Prepared by Solution Intercalation
,”
Thermochim. Acta
,
462
(
1–2
), pp.
70
75
.
14.
He
,
Y.
,
Wu
,
X. S.
, and
Chen
,
Z. C.
,
2011
, “
Thermal Conductivity of Composite Silicone Rubber Filled With Graphite/Silicone Carbide
,”
Adv. Mater. Res.
,
221
, pp.
382
388
.
15.
Chen
,
J.
, and
Zhang
,
H.
,
2015
, “
Thermal Conductivity Performance of Silicon Rubber Enhanced by Aluminum Nitride Powders
,”
Dig. J. Nanomater. Biostruct.
,
10
(
3
), pp.
1003
1008
.http://www.chalcogen.ro/1003_Chen.pdf
16.
Cheng
,
J. P.
,
Liu
,
T.
,
Zhang
,
J.
,
Wang
,
B. B.
,
Ying
,
J.
,
Liu
,
F.
, and
Zhang
,
X. B.
,
2014
, “
Influence of Phase and Morphology on Thermal Conductivity of Alumina Particle/Silicone Rubber Composites
,”
Appl. Phys.
,
117
(
4
), pp.
1985
1992
.
17.
Zha
,
J. W.
,
Zhu
,
Y.-H.
,
Li
,
W.-K.
,
Bai
,
J.
, and
Dang
,
Z.-M.
,
2012
, “
Low Dielectric Permittivity and High Thermal Conductivity Silicone Rubber Composites With Micro-Nano-Sized Particles
,”
Appl. Phys. Lett.
,
101
(
6
), p.
062905
.
18.
Ren
,
P. G.
,
Si
,
X. H.
,
Sun
,
Z. F.
,
Ren
,
F.
,
Pei
,
L.
, and
Hou
,
S. Y.
,
2016
, “
Thermal Stability of Ultra-High-Molecular-Weight Polyethylene Composites With a Segregated Structure
,”
J. Polym. Res.
,
23
(
2
), pp.
1
11
.
19.
Zhang
,
J.
,
Xu
,
F.
,
Hong
,
Y.
,
Xiong
,
Q.
, and
Pan
,
J.
,
2015
, “
A Comprehensive Review on the Molecular Dynamics Simulation of the Novel Thermal Properties of Graphene
,”
RSC Adv.
,
5
, pp.
89415
89426
.
20.
Zhang
,
H. Y.
,
Lin
,
Y. X.
,
Zhang
,
D. F.
,
Wang
,
W. G.
,
Xing
,
Y. X.
,
Lin
,
J.
,
Hong
,
H. Q.
, and
Li
,
C. H.
,
2016
, “
Graphene Nanosheet/Silicone Composite With Enhanced Thermal Conductivity and Its Application in Heat Dissipation of High-Power Light-Emitting Diodes
,”
Curr. Appl. Phys.
,
16
(
12
), pp.
1695
1702
.
21.
Zhao
,
X. W.
,
Zang
,
C. G.
,
Wen
,
Y. Q.
, and
Jiao
,
Q. J.
,
2015
, “
Thermal and Mechanical Properties of Liquid Silicone Rubber Composites Filled With Functionalized Graphene Oxide
,”
J. Appl. Polym. Sci.
,
132
(
38
), p.
42582
.
22.
Chen
,
J.
, Yao, B. W., Li, C., and Shi, G. Q.,
2013
, “
An Improved Hummers Method for Eco-Friendly Synthesis of Graphene Oxide
,”
Carbon
,
64
(
11
), pp.
225
229
.
23.
Ahmad
,
I.
,
Islam
,
M.
,
Abdo
,
H. S.
,
Subhani
,
T.
,
Khalil
,
K. A.
,
Almajid
,
A. A.
, Yazdani, B., and Zhu, Y. Q.,
2015
, “
Toughening Mechanisms and Mechanical Properties of Graphene Nanosheet-Reinforced Alumina
,”
Mater. Des.
,
88
, pp.
1234
1243
.
24.
Pak
,
S. Y.
,
Kim
,
H. M.
,
Kim
,
S. Y.
, and
Youn
,
J. R.
,
2012
, “
Synergistic Improvement of Thermal Conductivity of Thermoplastic Composites With Mixed Boron Nitride and Multi-Walled Carbon Nanotube Fillers
,”
Carbon
,
50
(
13
), pp.
4830
4838
.
25.
Yu
,
W.
,
Xie
,
H. Q.
,
Yin
,
L. Q.
,
Zhao
,
J. C.
,
Xia
,
L. G.
, and
Chen
,
L. F.
,
2015
, “
Exceptionally High Thermal Conductivity of Thermal Grease: Synergistic Effects of Graphene and Alumina
,”
Int. J. Therm. Sci.
,
91
, pp.
76
82
.
26.
Pradhan
,
B.
, and
Srivastava
,
S. K.
,
2014
, “
Synergistic Effect of Three-Dimensional Multi-Walled Carbon Nanotube–Nanofiller in Enhancing the Mechanical and Thermal Properties of High-Performance Silicone Rubber
,”
Polym. Int.
,
63
(
7
), pp.
1219
1228
.
27.
Yu
,
W.
,
Qi
,
Y.
,
Zhou
,
Y.
,
Chen
,
L.
,
Du
,
H.
, and
Xie
,
H.
,
2016
, “
Synergistic Improvement of Thermal Transport Properties for Thermoplastic Composites Containing Mixed Alumina and Graphene Fillers
,”
J. Appl. Polym. Sci.
,
133
(
13
), p.
43242
.
28.
He
,
Y.
,
Chen
,
Z. C.
, and
Ma
,
L. X.
,
2010
, “
Thermal Conductivity and Mechanical Properties of Silicone Rubber Filled With Different Particle Sized SiC
,”
Adv. Mater. Res.
,
87–88
, pp.
137
142
.
29.
Chiu
,
H. T.
,
Liu
,
Y. L.
,
Lin
,
C. W.
,
Shong
,
Z. J.
, and
Tsai
,
P. A.
,
2013
, “
Thermal Conductivity and Electrical Conductivity of Silicone Rubber Filled With Aluminum Nitride and Aluminum Powder
,”
J. Polym. Eng.
,
33
(
6
), pp.
545
549
.
30.
Haznedar
,
G.
,
Cravanzola
,
S.
,
Zanetti
,
M.
,
Scarano
,
D.
,
Zecchina
,
A.
, and
Cesano
,
F.
,
2013
, “
Graphite Nanoplatelets and Carbon Nanotubes Based Polyethylene Composites: Electrical Conductivity and Morphology
,”
Mater. Chem. Phys.
,
143
(
1
), pp.
47
52
.
31.
Boudenne
,
A.
,
Ibos
,
L.
,
Fois
,
M.
,
Géhin
,
E.
, and
Majesté
,
J. C.
,
2005
, “
Anomalous Behavior of Thermal Conductivity and Diffusivity in Polymeric Materials Filled With Metallic Particles
,”
J. Mater. Sci
,
40
(
16
), pp.
4163
4167
.
32.
Christopher
,
I. I.
, and
Azman
,
H.
,
2016
, “
Recently Emerging Trends in Thermal Conductivity of Polymer Nanocomposites
,”
Rev. Chem. Eng.
,
32
(
4
), pp.
413
457
.
33.
Pilhale
,
S.
,
Eder
,
F.
, and
Kroke
,
E.
,
2014
, “
Thermal Conductivity of Filled Sol-Gel-Derived Hybrid Materials
,”
J. Appl. Polym. Sci.
,
131
(
21
), pp.
276
282
.
34.
Johari
,
G. P.
, and
Andersson
,
O.
,
2015
, “
Effects of Stacking Disorder on Thermal Conductivity of Cubic Ice
,”
J. Chem. Phys.
,
143
(
5
), p.
054505
.
35.
Murali
,
R.
,
Yang
,
Y.
,
Brenner
,
K.
,
Beck
,
T.
, and
Meindl
,
J. D.
,
2009
, “
Breakdown Current Density of Graphene Nano Ribbons
,”
Appl. Phys. Lett.
,
94
(
24
), p.
243114
.
You do not currently have access to this content.