Graphene nanoplatelets (GNPs) have excellent thermal conductivity. It can significantly improve the heat-conducting property of epoxy resin (EP) matrix. In this paper, the GNPs/EP composites were successfully prepared by using ultrasonication and the cast molding method. The prepared GNPs/EP composites were systematically characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and thermal conductivity analyzer. Some factors affecting the thermal transfer performance of the composites were discussed. The defoamation has great influence on the thermal conductivity of composite. There is a nearly linear relationship between the mass fraction and the thermal conductivity of composite when the mass fraction of GNPs is below 4.3%. The results show that when the mass fraction of GNPs is 4.3% with crushing time of 2 s, the thermal conductivity of GNPs/EP composite is up to 0.99 W/m K. The thermal conductivity is increased by 9.0% compared with that without pulverization treatment (0.91 W/m K). When it is ground three times, the thermal conductivity of composite reaches the maximum (1.06 W/m K) and it is increased by 307.7% compared with that of epoxy resin matrix.

References

References
1.
He
,
L.
,
2004
, “
Epoxy Adhesive
,”
China Petrochemical Corp.
, Beijing, China, pp.
10
14
.
2.
Ding
,
F.
, and
Xie
,
W.
,
1993
, “
Thermally Conductive Resin-Based Composite Materials
,”
J. Compos. Mater.
,
3
(
1
), pp.
19
24
.
3.
Huang
,
X.
,
Zhi
,
C.
, and
Jiang
,
P.
,
2012
, “
Toward Effective Synergetic Effects From Graphene Nanoplatelets and Carbon Nanotubes on Thermal Conductivity of Ultrahigh Volume Fraction Nanocarbon Epoxy Composites
,”
J. Phys. Chem.
,
116
(
44
), pp.
23812
23820
.
4.
Yang
,
S.
,
Lin
,
W.
, and
Huang
,
Y.
,
2012
, “
Synergetic Effects of Graphene Platelets and Carbon Nanotubes on the Mechanical and Thermal Properties of Epoxy Composites
,”
Carbon
,
49
(
3
), pp.
793
803
.
5.
Tang
,
B.
,
Hu
,
G.
, and
Gao
,
H.
,
2015
, “
Application of Graphene as Filler to Improve Thermal Transport Property of Epoxy Resin for Thermal Interface Materials
,”
Int. J. Heat Mass Transfer
,
85
, pp.
420
429
.
6.
Ciecierska
,
E.
, Boczkowska, A., Kubiś, M., Chabera, P., and Wiśniewski, T., 2015, “Effect of Styrene Addition on Thermal Properties of Epoxy Resin Doped With Carbon Nanotubes,”
Polym. Adv. Technol.
,
26
(12), pp. 1593–1599.
7.
Novoselov
,
K.
,
Geim
,
A.
, and
Morozov
,
S.
,
2004
, “
Electric Field Effect in Atomically Thin Carbon Films
,”
Science
,
306
(
5696
), pp.
666
669
.
8.
Rao
,
C. N. R.
,
Sood
,
A. K.
, and
Subrahmanyam
,
K. S.
,
2009
, “
Graphene: The New Two-Dimensional Nanomaterial
,”
Angew. Chem. Int. Ed.
,
48
(
42
), pp.
7752
7777
.
9.
Srinivas
,
G.
, and
Zheng
,
X.
,
2015
, “
Graphene-Based Materials: Synthesis and Gas Sorption, Storage and Separation
,”
Prog. Mater. Sci.
,
69
, pp.
1
60
.
10.
Bolotin
,
K.
,
Sikes
,
K.
, and
Jiang
,
Z.
,
2008
, “
Ultrahigh Electron Mobility in Suspended Grapheme
,”
Solid State Commun.
,
146
(
9
), pp.
351
355
.
11.
Li
,
X.
,
Zhu
,
Y.
, and
Cai
,
W.
,
2009
, “
Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes
,”
Nano Lett.
,
9
(
12
), pp.
4359
4363
.
12.
Balandin
,
A.
,
Ghosh
,
S.
, and
Bao
,
W.
,
2008
, “
Superior Thermal Conductivity of Single-Layer Grapheme
,”
Nano Lett.
,
8
(
3
), pp.
902
907
.
13.
Yu
,
W.
,
Xie
,
H.
, and
Wang
,
M.
,
2011
, “
Significant Thermal Conductivity Enhancement for Nanofluids Containing Graphene Nanosheets
,”
Phys. Lett. A
,
375
(
10
), pp.
1323
1328
.
14.
Yu
,
W.
,
Xie
,
H.
, and
Chen
,
L.
,
2013
, “
Graphene Nanoplatelets/Nylon 6 Composites With High Thermal Conductivity
,”
J. Eng. Thermophys.
,
34
(
9
), pp.
1749
1751
.
15.
Lee
,
C.
,
Wei
,
X.
, and
Kysar
,
J.
,
2008
, “
Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Grapheme
,”
Science
,
321
(
5887
), pp.
385
388
.
16.
Martin-Gallego
,
M.
,
Berna
,
M.
, and
Hernandez
,
M.
,
2013
, “
Comparison of Filler Percolation and Mechanical Properties in Graphene and Carbon Nanotubes Filled Epoxy Nanocomposites
,”
Eur. Polym. J.
,
49
(
6
), pp.
1347
1353
.
17.
Yu
,
A.
,
Ramesh
,
P.
, and
Sun
,
X.
,
2008
, “
Enhanced Thermal Conductivity in a Hybrid Graphite Nanoplatelet-Carbon Nanotube Filler for Epoxy Composites
,”
Adv. Mater.
,
20
(
24
), pp.
4740
4744
.
18.
An
,
J.
, and
Jeong
,
Y.
,
2013
, “
Structure and Electric Heating Performance of Graphene/Epoxy Composite Films
,”
Eur. Polym. J.
,
49
(
6
), pp.
1322
1330
.
19.
Yu
,
A.
,
Ramesh
,
P.
, and
Itkis
,
M.
,
2007
, “
Graphite Nanoplatelet-Epoxy Composite Thermal Interface Materials
,”
J. Phys. Chem. C
,
111
(
21
), pp.
7565
7569
.
20.
Fu
,
Y.
,
He
,
Z.
, and
Mo
,
D.
,
2014
, “
Thermal Conductivity Enhancement of Epoxy Adhesive Using Graphene Sheets as Additives
,”
Int. J. Therm. Sci.
,
86
, pp.
276
283
.
21.
Guo
,
W.
, and
Chen
,
G.
,
2014
, “
Fabrication of Graphene/Epoxy Resin Composites With Much Enhanced Thermal Conductivity Via Ball Milling Technique
,”
J. Appl. Polym. Sci.
,
131
(
15
), pp.
338
347
.
22.
Wang
,
X.
,
Jin
,
J.
, and
Song
,
M.
,
2012
, “
Cyanate Ester Resin/Graphene Nanocomposite: Curing Dynamics and Network Formation
,”
Eur. Polym. J.
,
48
(
6
), pp.
1034
1041
.
23.
Hernandez
,
Y.
,
Nicolosi
,
V.
, and
Lotya
,
M.
,
2008
, “
High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite
,”
Nat. Nanotechnol.
,
3
(
9
), pp.
563
568
.
24.
Lee
,
G.
, and
Chang
,
K.
,
2014
, “
Enhanced Thermal Conductivity of Nanofluids Containing Graphene Nanoplatelets Prepared by Ultrasound Irradiation
,”
J. Mater. Sci.
,
49
(
4
), pp.
1506
1511
.
25.
Tang
,
K.
,
Zhu
,
F.
, and
Li
,
Y.
,
2014
, “
Effect of Defects on Thermal Conductivity of Graphene
,”
International Conference on Electronic Packaging Technology
(
ICEPT
), Chengdu, China, Aug. 12–15, Vol.
49
, pp.
49
60
.
26.
Yang
,
G.
, and
Kim
,
J.
,
2015
, “
Probing Patterned Defects on Graphene Using Differential Interference Contrast Observation
,”
Appl. Phys. Lett.
,
106
(
8
), p.
081901
.
27.
Yasmin
,
A.
,
Abot
,
J.
, and
Daniel
,
I.
,
2003
, “
Processing of Clay/Epoxy Nanocomposites With a Three-Roll Mill Machine
,”
MRS Proc.
,
740
.
28.
Prolongo
,
S.
,
Moriche
,
R.
, and
Jiménez-Suárez
,
A.
,
2014
, “
Advantages and Disadvantages of the Addition of Graphene Nanoplatelets to Epoxy Resins
,”
Eur. Polym. J.
,
61
, pp.
206
214
.
You do not currently have access to this content.