In this study, heat transfer and fluid flow of de-ionized water in two-dimensional parallel plates microchannel with and without micromixers have been investigated for various Reynolds numbers. The effects of heat transfer and fluid flow on height, diameter of micromixer, and also distance between the two micromixers are carried out in the study. Results showed that the diameter of the micromixer does not have much effect on heat transfer with a maximum enhancement of 9.5%. Whereas heat transfer gets enhanced by 85.57% when the height of the micromixer is increased from 100 μm to 400 μm, and also heat transfer gets improved by 11.45% when sb2 is increased from 4L to 5L. The separation and reattachment zone at the entry and exit of the micromixer cause the increase in heat transfer with the penalty of pressure drop. It is also found that increase of Reynolds number increases the intensity of the secondary flows leads to rapid increase in heat transfer and pressure drop. Finally, the optimized structure of micromixer is found out based on maximum heat transfer and minimum pressure drop.

References

References
1.
International Technology Roadmap for Semiconductors (ITRS)
,
2003
, “
Executive Summary
,” Semiconductor Industry Association, Washington, DC, Vol.
57
.
2.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.
3.
Kandlikar
,
S. G.
,
Schmitt
,
D.
,
Carrano
,
A. L.
, and
Taylor
,
J. B.
,
2005
, “
Characterization of Surface Roughness Effects on Pressure Drop in Single-Phase Flow in Minichannels
,”
Phys. Fluids
,
17
(
10
), p.
100606
.
4.
Qu
,
W. L.
, and
Mudawar
,
I.
,
2002
, “
Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Channel Heat Sink
,”
Int. J. Heat Mass Transfer
,
45
(
12
), pp.
2549
2565
.
5.
Weilin
,
Q.
,
Mohiuddin Mala
,
G.
, and
Dongqing
,
L.
,
2000
, “
Pressure-Driven Water Flows in Trapezoidal Silicon Microchannels
,”
Int. J. Heat Mass Transfer
,
43
(
3
), pp.
353
364
.
6.
Peiyi
,
W.
, and
Little
,
W. A.
,
1983
, “
Measurement of Friction Factors for the Flow of Gases in Very Fine Channels Used for Microminiature Joule-Thomson Refrigerators
,”
Cryogenics
,
23
(
5
), pp.
273
277
.
7.
Peiyi
,
W.
, and
Little
,
W. A.
,
1984
, “
Measurement of the Heat Transfer Characteristics of Gas Flow in Fine Channel Heat Exchangers Used for Microminiature Refrigerators
,”
Cryogenics
,
24
(
8
), pp.
415
420
.
8.
Gamrat
,
G.
,
Favre-Marint
,
M.
,
Le Person
,
S.
,
Baviere
,
R.
, and
Ayela
,
F.
,
2008
, “
An Experimental Study and Modelling of Roughness Effects on Laminar Flow in Microchannels
,”
J. Fluid Mech.
,
594
, pp.
399
423
.
9.
Brackbill
,
T. P.
,
2008
, “
Experimental Investigation on the Effects of Surface Roughness on Microscale Fluid Flow
,”
M.S. thesis
, Rochester Institute of Technology, Rochester, NY.http://scholarworks.rit.edu/theses/7221/
10.
Brackbill
,
T. P.
, and
Kandlikar
,
S. G.
,
2006
, “
Effect of Triangular Roughness Elements on Pressure Drop and Laminar-Turbulent Transition in Microchannels and Minichannels
,”
ASME
Paper No. ICNMM2006-96062.
11.
Brackbill
,
T. P.
, and
Kandlikar
,
S. G.
,
2007
, “
Effect of Sawtooth Roughness on Pressure Drop and Turbulent Transition in Microchannels
,”
Heat Transfer Eng.
,
28
(
8–9
), pp.
662
669
.
12.
Brackbill
,
T. P.
, and
Kandlikar
,
S. G.
,
2007
, “
Effects of Low Uniform Relative Roughness on Single-Phase Friction Factors in Microchannels and Minichannels
,”
ASME
Paper No. ICNMM2007-30031.
13.
Wu
,
H. Y.
, and
Cheng
,
P.
,
2003
, “
An Experimental Study of Convective Heat Transfer in Silicon Microchannels With Different Surface Conditions
,”
Int. J. Heat Mass Transfer
,
46
(
14
), pp.
2547
2556
.
14.
Ahn
,
S. W.
,
2001
, “
The Effect of Roughness Types on Friction Factors and Heat Transfer in Roughened Rectangular Duct
,”
Int. Commun. Heat Mass Transfer
,
28
(
7
), pp.
933
942
.
15.
Croce
,
G.
, and
Agaro
,
P. D.
,
2005
, “
Numerical Simulation of Roughness Effect on Microchannel Heat Transfer and Pressure Drop in Laminar Flow
,”
J. Phys. D: Appl. Phys.
,
38
(
10
), pp.
1518
1530
.
16.
Croce
,
G.
, and
D'Agaro
,
P.
,
2004
, “
Numerical Analysis of Roughness Effect on Microtube Heat Transfer
,”
Superlattices Microstruct.
,
35
(
3–6
), pp.
601
616
.
17.
Wong
,
S. H.
,
Ward
,
M. C. L.
, and
Wharton
,
C. W.
,
2004
, “
Micro T-Mixer as a Rapid Mixing Micromixer
,”
Sens. Actuators, B
,
100
(
3
), pp.
359
379
.
18.
Bau
,
H. H.
,
Zhong
,
J.
, and
Yi
,
M.
,
2001
, “
A Minute Magneto Hydro Dynamic (MHD) Mixer
,”
Sens. Actuators, B
,
79
(
2–3
), pp.
207
215
.
19.
Oddy
,
M. H.
,
Santiago
,
J. G.
, and
Mikkelsen
,
J. C.
,
2001
, “
Electrokinetic Instability Micromixing
,”
Anal. Chem.
,
73
(
24
), pp.
5822
5832
.
20.
Wang
,
M.
, and
Kang
,
Q.
,
2009
, “
Electrokinetic Transport in Microchannels With Random Roughness
,”
Anal. Chem.
,
81
(
8
), pp.
2953
2961
.
21.
Chung
,
C. K.
,
Wu
,
C. Y.
,
Shih
,
T. R.
,
Wu
,
C. F.
, and
Wu
,
B. H.
,
2006
, “
Design and Simulation of a Novel Micro-Mixer With Baffles and Side-Wall Injection Into the Main Channel
,”
First IEEE International Conference on Nano/Micro Engineered Molecular Systems
(
IEEE-NEMS
), Zhuhai, China, Jan. 18–21, pp.
721
724
.
22.
Dharaiya
,
V. V.
, and
Kandlikar
,
S. G.
,
2013
, “
A Numerical Study on the Effects of 2D Structured Sinusoidal Elements on Fluid Flow and Heat Transfer at Microscale
,”
Int. J. Heat Mass Transfer
,
57
(
1
), pp.
190
201
.
23.
Alam
,
A.
, and
Kim
,
K. Y.
,
2012
, “
Analysis of Mixing in a Curved Microchannel With Rectangular Grooves
,”
Chem. Eng. J.
,
181–182
, pp.
708
716
.
24.
Xia
,
G.
,
Chai
,
L.
,
Zhou
,
M.
, and
Wang
,
H.
,
2011
, “
Effects of Structural Parameters on Fluid Flow and Heat Transfer in a Microchannel With Aligned Fan-Shaped Reentrant Cavities
,”
Int. J. Therm. Sci.
,
50
(
3
), pp.
411
419
.
25.
Stogiannis
,
I. A.
,
Passos
,
A. D.
,
Mouza
,
A. A.
,
Paras
,
S. V.
,
Pěnkavová
,
V.
, and
Tihon
,
J.
,
2014
, “
Flow Investigation in a Microchannel With a Flow Disturbing Rib
,”
Chem. Eng. Sci.
,
119
, pp.
65
76
.
26.
Islami
,
S. B.
,
Dastvareh
,
B.
, and
Gharraei
,
R.
,
2013
, “
Numerical Study of Hydrodynamic and Heat Transfer of Nanofluid Flow in Microchannels Containing Micromixer
,”
Int. Commun. Heat Mass Transfer
,
43
, pp.
146
154
.
27.
Okhotin
,
A. S.
,
Pushkarskii
,
A. S.
, and
Gorbachev
,
V. V.
,
1972
,
Thermophysical Properties of Semiconductors
,
Atom Publication House
,
Moscow, Russia
.
28.
Ebrahimi
,
A.
,
Roohi
,
E.
, and
Kheradmand
,
S.
,
2015
, “
Numerical Study of Liquid Flow and Heat Transfer in Rectangular Microchannel With Longitudinal Vortex Generators
,”
Appl. Therm. Eng.
,
78
, pp.
576
583
.
29.
Maïga
,
S. E. B.
,
Nguyen
,
C. T.
,
Galanis
,
N.
, and
Roy
,
G.
,
2004
, “
Heat Transfer Behaviours of Nanofluids in a Uniformly Heated Tube
,”
Superlattices Microstruct.
,
35
(
3–6
), pp.
543
557
.
30.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
.
31.
Liu
,
C.
,
Teng
,
J. T.
,
Chu
,
J. C.
,
Chiu
,
Y. L.
,
Huang
,
S.
,
Jin
,
S.
,
Dang
,
T.
,
Greif
,
R.
, and
Pan
,
H. H.
,
2011
, “
Experimental Investigations on Liquid Flow and Heat Transfer in Rectangular Microchannel With Longitudinal Vortex Generators
,”
Int. J. Heat Mass Transfer
,
54
(
13–14
), pp.
3069
3080
.
32.
Datta
,
A.
,
Sanyal
,
D.
, and
Das
,
A. K.
,
2016
, “
Numerical Investigation of Heat Transfer in Microchannel Using Inclined Longitudinal Vortex Generator
,”
Appl. Therm. Eng.
,
108
, pp.
1008
1019
.
You do not currently have access to this content.