The influence of surface roughness on flow boiling heat transfer and pressure drop in microchannels is experimentally explored. The microchannel heat sink employed in the study consists of ten parallel, 25.4 mm long channels with nominal dimensions of 500×500μm2. The channels were produced by saw-cutting. Two of the test piece surfaces were roughened to varying degrees with electrical discharge machining (EDM). The roughness average Ra varied from 1.4μm for the as-fabricated, saw-cut surface to 3.9μm and 6.7μm for the two roughened EDM surfaces. Deionized water was used as the working fluid. The experiments indicate that the surface roughness has little influence on boiling incipience and only a minor impact on saturated boiling heat transfer coefficients at lower heat fluxes. For wall heat fluxes above 1500kW/m2, the two EDM surfaces (3.9μm and 6.7μm) have similar heat transfer coefficients that were 20–35% higher than those measured for the saw-cut surface (1.4μm). A modified Bertsch et al. [2009, “A Composite Heat Transfer Correlation for Saturated Flow Boiling in Small Channels,” Int. J. Heat Mass Transfer, 52, pp. 2110–2118] correlation was found to provide acceptable predictions of the flow boiling heat transfer coefficient over the range of conditions tested. Analysis of the pressure drop measurements indicates that only the roughest surface (6.7μm) has an adverse effect on the two-phase pressure drop.

1.
Bertsch
,
S. S.
,
Groll
,
E. A.
, and
Garimella
,
S. V.
, 2008, “
Refrigerant Flow Boiling Heat Transfer in Parallel Microchannels as a Function of Local Vapor Quality
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
4775
4787
.
2.
Harirchian
,
T.
, and
Garimella
,
S. V.
, 2008, “
Microchannel Size Effects on Local Flow Boiling Heat Transfer to a Dielectric Fluid
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
3724
3735
.
3.
Bertsch
,
S. S.
,
Groll
,
E. A.
, and
Garimella
,
S. V.
, 2009, “
Effects of Heat Flux, Mass Flux, Vapor Quality, and Saturation Temperature on Flow Boiling Heat Transfer in Microchannels
,”
Int. J. Multiphase Flow
0301-9322,
35
, pp.
142
154
.
4.
Harirchian
,
T.
, and
Garimella
,
S. V.
, 2009, “
Effects of Channel Dimension, Heat Flux, and Mass Flux on Flow Boiling Regimes in Microchannels
,”
Int. J. Multiphase Flow
0301-9322,
35
, pp.
349
362
.
5.
Bertsch
,
S. S.
,
Groll
,
E. A.
, and
Garimella
,
S. V.
, 2009, “
A Composite Heat Transfer Correlation for Saturated Flow Boiling in Small Channels
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
2110
2118
.
6.
Kandlikar
,
S. G.
, 1998, “
Heat Transfer Characteristics in Partial Boiling, Fully Developed Boiling, and Significant Void Flow Regions of Subcooled Flow Boiling
,”
ASME J. Heat Transfer
0022-1481,
120
, pp.
395
401
.
7.
Qu
,
W.
, and
Mudawar
,
I.
, 2003, “
Measurement and Prediction of Pressure Drop in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2737
2753
.
8.
Lee
,
J.
, and
Mudawar
,
I.
, 2005, “
Two-Phase Flow in High-Heat-Flux Micro-Channel Heat Sink for Refrigeration Cooling Applications: Part I—Pressure Drop Characteristics
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
928
940
.
9.
Lee
,
P. -S.
, and
Garimella
,
S. V.
, 2008, “
Saturated Flow Boiling Heat Transfer and Pressure Drop in Silicon Microchannel Arrays
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
789
806
.
10.
Ammerman
,
C. N.
, and
You
,
S. M.
, 1998, “
Enhancing Small-Channel Convective Boiling Performance Using a Microporous Surface Coating
,”
1998 International Mechanical Engineering Congress and Exposition
, Anaheim, CA, Vol.
3
, pp.
467
476
.
11.
Ammerman
,
C. N.
, and
You
,
S. M.
, 2001, “
Enhancing Small-Channel Convective Boiling Performance Using a Microporous Surface Coating
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
976
983
.
12.
Kovalev
,
S. A.
, and
Shklover
,
E. G.
, 1988, “
Heat Transfer in the Boiling of Water on a Porous Surface in an Annular Channel
,”
High Temp.
0018-151X,
26
, pp.
712
717
.
13.
Savkin
,
N. N.
,
Kuzma-Kichta
,
Yu. A.
, and
Komendantov
,
A. S.
, 1988, “
Investigating Enhancement of Heat Transfer With Water Boiling Under Conditions of Forced Flow in a Tube With a Porous Coating
,”
Therm. Eng.
0040-6015,
35
, pp.
295
297
.
14.
Zhang
,
L.
,
Wang
,
E. N.
,
Goodson
,
K. E.
, and
Kenny
,
T. W.
, 2005, “
Phase Change Phenomena in Silicon Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
1572
1582
.
15.
Kandlikar
,
S. G.
,
Kuan
,
W. K.
,
Willistein
,
D. A.
, and
Borrelli
,
J.
, 2006, “
Stabilization of Flow Boiling in Microchannels Using Pressure Drop Elements and Fabricated Nucleation Sites
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
389
396
.
16.
Koşar
,
A.
,
Kuo
,
C. -J.
, and
Peles
,
Y.
, 2005, “
Boiling Heat Transfer in Rectangular Microchannels With Reentrant Cavities
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
4867
4886
.
17.
Koşar
,
A.
,
Kuo
,
C. -J.
, and
Peles
,
Y.
, 2005, “
Reduced Pressure Boiling Heat Transfer in Rectangular Microchannels With Interconnected Reentrant Cavities
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
1106
1114
.
18.
Kuo
,
C. -J.
,
Koşar
,
A.
,
Peles
,
Y.
,
Virost
,
S.
,
Mishra
,
C.
, and
Jensen
,
M. K.
, 2006, “
Bubble Dynamics During Boiling in Enhanced Surface Microchannels
,”
J. Microelectromech. Syst.
1057-7157,
15
, pp.
1514
1527
.
19.
Kuo
,
C. -J.
, and
Peles
,
Y.
, 2007, “
Local Measurement of Flow Boiling in Structured Surface Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
4513
4526
.
20.
Kuo
,
C. -J.
, and
Peles
,
Y.
, 2008, “
Flow Boiling Instabilities in Microchannels and Means for Mitigation by Reentrant Cavities
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
072402
.
21.
Jones
,
R.
,
Pate
,
D.
, and
Bhavnani
,
S.
, 2006, “
Phase Change Thermal Transport in Etched Silicon Microchannel Heat Sinks
,” Proceedings of the 13th International Heat Transfer Conference, Sydney, Australia.
22.
Jones
,
R. J.
,
Pate
,
D. T.
, and
Bhavnani
,
S. H.
, 2007, “
Control of Instabilities in Two-Phase Microchannel Flow Using Artificial Nucleation Sites
,”
Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems
, Vancouver, Canada.
23.
Pate
,
D. T.
,
Jones
,
R. J.
, and
Bhavnani
,
S. H.
, 2006, “
Cavity-Induced Two-Phase Heat Transfer in Silicon Microchannels
,” Proceedings of the Tenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems, San Diego, CA, pp.
71
78
.
24.
Webb
,
R. L.
, 1981, “
The Evolution of Enhanced Surface Geometries for Nucleate Boiling
,”
Heat Transfer Engineering
,
2
, pp.
46
69
.
25.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
, 2004, “
Control and Effect of Dissolved Air in Water During Flow Boiling in Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
1925
1935
.
26.
Chen
,
T.
, and
Garimella
,
S. V.
, 2006, “
Effects of Dissolved Air on Subcooled Flow Boiling of a Dielectric Coolant in a Microchannel Heat Sink
,”
ASME J. Electron. Packag.
1043-7398,
128
, pp.
398
404
.
27.
Collier
,
J. G.
, 1981,
Convective Boiling and Condensation
, 2nd ed.,
McGraw-Hill
,
New York
.
28.
Blevins
,
R. D.
, 1992,
Applied Fluid Dynamics Handbook
,
Van Nostrand Reinhold Company
,
New York
.
29.
Chisholm
,
D.
, and
Sutherland
,
L. A.
, 1969, “
Predictions of Pressure Gradients in Pipeline Systems During Two-Phase Flow
,”
Symposium on Fluid Mechanics and Measurements in Two-Phase Flow Systems
, University of Leeds.
30.
Mishima
,
K.
, and
Hibiki
,
T.
, 1996, “
Some Characteristics of Air-Water Two-Phase Flow in Small Diameter Vertical Tubes
,”
Int. J. Multiphase Flow
0301-9322,
22
, pp.
703
712
.
31.
Lockhart
,
R. W.
, and
Martinelli
,
R. C.
, 1949, “
Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes
,”
Chem. Eng. Prog.
0360-7275,
45
, pp.
39
48
.
32.
Lee
,
J.
, and
Mudawar
,
I.
, 2005, “
Two-Phase Flow in High-Heat-Flux Micro-Channel Heat Sink for Refrigeration Cooling Applications: Part II—Heat Transfer Characteristics
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
941
955
.
33.
Chen
,
T.
, and
Garimella
,
S. V.
, 2006, “
Measurements and High-Speed Visualizations of Flow Boiling of a Dielectric Fluid in a Silicon Microchannel Heat Sink
,”
Int. J. Multiphase Flow
0301-9322,
32
, pp.
957
971
.
34.
Yan
,
Y. -Y.
, and
Lin
,
T. -F.
, 1998, “
Evaporation Heat Transfer and Pressure Drop of Refrigerant R-134a in a Small Pipe
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
4183
4194
.
35.
Lee
,
H. J.
, and
Lee
,
S. Y.
, 2001, “
Heat Transfer Correlation for Boiling Flows in Small Rectangular Horizontal Channels With Low Aspect Ratios
,”
Int. J. Multiphase Flow
0301-9322,
27
, pp.
2043
2062
.
36.
Bertsch
,
S. S.
,
Groll
,
E. A.
, and
Garimella
,
S. V.
, 2008, “
Review and Comparative Analysis of Studies on Saturated Flow Boiling in Small Channels
,”
Nanoscale Microscale Thermophys. Eng.
1556-7265,
12
, pp.
187
227
.
37.
Cooper
,
M. G.
, 1984, “
Saturation Nucleate Pool Boiling—A Simple Correlation
,”
First UK National Conference on Heat Transfer
, University of Leeds, pp.
785
793
.
38.
Cooper
,
M. G.
, 1984, “
Heat Flow Rates in Saturated Nucleate Pool Boiling—A Wide-Ranging Examination Using Reduced Properties
,”
Adv. Heat Transfer
0065-2717,
16
, pp.
157
239
.
39.
Chen
,
J. C.
, 1966, “
Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow
,”
I&EC Process Des. Dev.
,
5
, pp.
322
329
.
40.
Hausen
,
H.
, 1943, “
Darstellung des Wärmeüberganges in Rohren durch verallgemeinerte Potenzbeziehungen
,”
Z. VDI-Beiheft Verfahrenstechnik
,
4
, pp.
91
102
.
41.
Jones
,
B. J.
,
McHale
,
J. P.
, and
Garimella
,
S. V.
, 2009, “
The Influence of Surface Roughness on Nucleate Pool Boiling Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
131
, p.
121009
.
42.
Nishikawa
,
K.
,
Fujita
,
Y.
,
Ohta
,
H.
, and
Hidaka
,
S.
, 1982, “
Effect of the Surface Roughness on the Nucleate Boiling Heat Transfer Over the Wide Range of Pressure
,” Proceedings of the Seventh International Heat Transfer Conference, Müchen, Germany, Vol.
4
, pp.
61
66
.
43.
Nishikawa
,
K.
,
Fujita
,
Y.
,
Ohta
,
H.
, and
Hidaka
,
S.
, 1982, “
Effects of System Pressure and Surface Roughness on Nucleate Boiling Heat Transfer
,”
Mem. Fac. Eng., Kyushu Univ.
0023-6160,
42
(
2
), pp.
95
111
.
44.
Gorenflo
,
D.
, 1993,
Pool Boiling
, VDI Heat Atlas,
VDI Verlag
,
Düsseldorf, Germany
.
45.
Lee
,
H. J.
, and
Lee
,
S. Y.
, 2001, “
Pressure Drop Correlations for Two-Phase Flow Within Horizontal Rectangular Channels With Small Heights
,”
Int. J. Multiphase Flow
0301-9322,
27
, pp.
783
796
.
You do not currently have access to this content.