Contemporary electronic systems generate high component-level heat fluxes. Impingement cooling is an effective way to induce high heat transfer coefficients in order to meet thermal constraints. The objective of this paper is to experimentally investigate the heat transfer from five novel target surface structures to a normally impinging, submerged, and confined water jet. The five target structures were: 90 deg vane, a 2×2 pin fin array, and three geometries, which turn the flow away from, and back towards, the surface to be cooled to create an annular jet. The experiments were conducted for inlet Reynolds numbers of 500Re22,000, based on the mean velocity and jet tube diameter. The confined impinging jet was geometrically constrained to a round 8.5 mm diameter, square edged nozzle at a jet exit-to-target surface spacing of H/D=0.5. The heat transfer characteristics of the five target surfaces were nondimensionally compared to a flat surface, and surface effectiveness of up to 2.2 was recorded. Enhancements of up to 45% were noted when the wetted surface area of the target surface structures was considered. The pressure drop attributed to the target surfaces is also considered. The findings of the paper are of practical relevance to the design of primary heat exchangers for high-flux thermal management applications, where the boundaries of cooling requirements continue to be tested.

1.
Schmidt
,
R.
, 2005, “
Liquid Cooling is Back
,”
Electronic Cooling
,
11
(
3
), pp.
34
38
.
2.
Holman
,
J. P.
, and
Lloyd
,
J.
, 2002,
Heat Transfer
,
9th ed.
,
McGraw-Hill
,
New York
.
3.
Martin
,
H.
,
James
,
P. H.
,
Thomas
,
F.
, and
Irvine
,
J.
, 1977, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
0065-2717,
13
, pp.
1
60
.
4.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M. A.
, and
Button
,
B. L.
, 1992, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
0142-727X,
13
, pp.
106
115
.
5.
Garimella
,
S. V.
, 1999, “
Heat Transfer and Flow Fields in Confined Jet Impingement
,”
Annu. Rev. Heat Transfer
1049-0787,
11
, pp.
413
494
.
6.
Polat
,
S.
,
Huang
,
B.
,
Mujumdar
,
S.
, and
Douglas
,
W.
, 1989, “
Numerical Flow and Heat Transfer Under Impinging Jets: A Review
,”
Annu. Rev. Numer. Fluid Mech. Heat Transfer
0892-6883,
2
, pp.
157
197
.
7.
Gardon
,
R.
, and
Akfirat
,
J. C.
, 1965, “
The Role of Turbulence in Determining the Heat Transfer Characteristics of Impinging Jets
,”
Int. J. Heat Mass Transfer
0017-9310,
8
, pp.
1261
1272
.
8.
Jeffers
,
N.
,
Punch
,
J.
, and
Walsh
,
E.
, “
An Investigation of Thermal and Velocity Fields for Confined Jet Impinging on a Flow-Altering Vane Target Surface
,”
Int. J. Heat Mass Transfer
0017-9310 (unpublished).
9.
Stevens
,
J.
, and
Webb
,
B. W.
, 1991, “
Local Heat Transfer Coefficients Under an Axisymmetric, Single-Phase Liquid Jet
,”
ASME J. Heat Transfer
0022-1481,
113
, pp.
71
78
.
10.
Garimella
,
S. V.
, and
Rice
,
R. A.
, 1995, “
Confined and Submerged Liquid Jet Impingement Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
117
, pp.
871
877
.
11.
Behnia
,
M.
,
Parneix
,
Y. S. S.
, and
Durbin
,
P. A.
, 1999, “
Numerical Study of Turbulent Heat Transfer in Confined and Unconfined Impinging Jets
,”
Int. J. Heat Fluid Flow
0142-727X,
20
, pp.
1
9
.
12.
Obot
,
N. T.
,
Mujumbar
,
A. S.
, and
Douglas
,
W. J. M.
, 1982, “
Effects of Semi-Confinement on Impingement Heat Transfer
,”
Proceedings of the Seventh International Heat Transfer Conference
, Munich, Vol.
3
, pp.
395
400
.
13.
Gao
,
N.
, and
Ewing
,
D.
, 2006, “
Investigation of the Effect of Confinement on the Heat Transfer to Round Impinging Jets Exiting a Long Pipe
,”
Int. J. Heat Fluid Flow
0142-727X,
27
, pp.
33
41
.
14.
Thomann
,
H.
, 1968, “
Effect of Streamwise Wall Curvature on Heat Transfer in a Turbulent Boundary Layer
,”
J. Fluid Mech.
0022-1120,
33
, pp.
283
292
.
15.
Eren
,
H.
,
Yesilata
,
B.
, and
Celik
,
N.
, 2007, “
Nonlinear Flow and Heat Transfer Dynamics of Impinging Jets Onto Slightly-Curved Surfaces
,”
Appl. Therm. Eng.
1359-4311,
27
, pp.
2600
2608
.
16.
Chung
,
Y. S.
,
Lee
,
D. H.
, and
Ligrani
,
P. M.
, 2005, “
Jet Impingement Cooling of Chips Equipped With Cylindrical Pedestal Profile Fins
,”
J. Electron. Packag.
1043-7398,
127
, pp.
106
112
.
17.
Fleischer
,
A. S.
, and
Nejad
,
S. R.
, 2004, “
Jet Impingement Cooling of a Discretely Heated Portion of a Protruding Pedestal With a Single Round Air Jet
,”
Exp. Therm. Fluid Sci.
0894-1777,
28
, pp.
893
901
.
18.
Sullivan
,
P. F.
,
Ramadhyani
,
S.
, and
Incropera
,
F. P.
, 1992, “
Extended Surfaces to Enhanced Impingement Cooling With Single Circular Liquid Jets
,”
ASME
Paper No. EEP-1-1, pp.
207
216
.
19.
Heindel
,
T. J.
,
Ramadhyani
,
F. I. S.
, and
Campo
,
A.
, 1992, “
Surface Enhancement of a Heat Source Exposed to a Circular Liquid Jet With Annular Collection of the Spent Fluid
,”
ASME
Paper No. HTD-206-2, pp.
111
118
.
20.
Incropera
,
F. P.
, 1999,
Liquid Cooling of Electronic Devices by Single-Phase Convection
,
Wiley
,
New York
.
21.
Copeland
,
D.
, 1995, “
Single-Phase and Boiling Cooling of Small Pin Fin Arrays by Multiple Slot Nozzle Suction and Impingement
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
1070-9886,
18
, pp.
510
516
.
22.
Ricci
,
R.
, and
Montelpare
,
S.
, 2006, “
An Experimental IR Thermographic Method for the Evaluation of the Heat Transfer Coefficient of Liquid-Cooled Short Pin Fins Arranged in Line
,”
Exp. Therm. Fluid Sci.
0894-1777,
30
, pp.
381
391
.
23.
Priedeman
,
D.
,
Callahan
,
V.
, and
Webb
,
B. W.
, 1994, “
Enhancement of Liquid Jet Impingement Heat Transfer With Surface Modifications
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
486
489
.
24.
Brignoni
,
L.
, and
Garimella
,
S.
, 1999, “
Experimental Optimization of Confined Air Jet Impingement on a Pin Fin Heat Sink
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
22
, pp.
399
404
.
25.
Hansen
,
L.
, and
Webb
,
B.
, 1993, “
Air Jet Impingement Heat Transfer From Modified Surfaces
,”
Int. J. Heat Mass Transfer
0017-9310,
36
, pp.
989
997
.
26.
Nakod
,
P. M.
,
Prabhu
,
S. V.
, and
Vedula
,
R. P.
, 2008, “
Heat Transfer Augmentation Between Impinging Circular Air Jet and Flat Plate Using Finned Surfaces and Vortex Generators
,”
Exp. Therm. Fluid Sci.
0894-1777,
32
, pp.
1168
1187
.
27.
Gao
,
N.
,
Sun
,
H.
, and
Ewing
,
D.
, 2003, “
Heat Transfer to Impinging Round Jets With Triangular Tabs
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2557
2569
.
28.
Ekkad
,
S. V.
, and
Kontrovitz
,
D.
, 2002, “
Jet Impingement Heat Transfer on Dimpled Target Surfaces
,”
Int. J. Heat Fluid Flow
0142-727X,
23
, pp.
22
28
.
29.
Gau
,
C.
, and
Lee
,
I. C.
, 2000, “
Flow and Impingement Cooling Heat Transfer Along Triangular Rib-Roughened Walls
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
4405
4418
.
30.
Lou
,
Z.
,
Mujumdar
,
A.
, and
Yap
,
C.
, 2005, “
Effects of Geometric Parameters on Confined Impinging Jet Heat Transfer
,”
Appl. Therm. Eng.
1359-4311,
25
, pp.
2687
2697
.
31.
Kays
,
W. M.
,
Crawford
,
M. E.
, and
Weigand
,
B.
, 2004,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
32.
Garimella
,
S. V.
, and
Nenaydykh
,
B.
, 1996, “
Nozzle-Geometry Effects in Liquid Jet Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
0017-9310,
39
, pp.
2915
2923
.
33.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
385
387
.
34.
Ma
,
C.
, and
Bergles
,
A.
, 1990, “
Convective Heat Transfer on a Small Vertical Heated Surface in an Impingement Circular Liquid Jet
,”
Heat Transfer Science and Technology
,
Hemisphere
,
Washington, DC
, pp.
193
200
.
35.
Sun
,
H.
,
Ma
,
C. F.
, and
Nakayama
,
W.
, 1993, “
Local Characteristics of Convective Heat Transfer From Simulated Microelectronic Chips to Impinging Submerged Round Water Jets
,”
J. Electron. Packag.
1043-7398,
115
, pp.
71
77
.
36.
Sun
,
H.
,
Ma
,
C. F.
, and
Chen
,
Y. C.
, 1998, “
Prandtl Number Dependence of Impingement Heat Transfer With Circular Free-Surface Liquid Jets
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
1360
1363
.
37.
Lytle
,
D.
, and
Webb
,
B. W.
, 1994, “
Air Jet Impingement Heat Transfer at Low Nozzle-Plate Spacings
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
1687
1697
.
38.
Kanokjaruvijit
,
K.
, and
Martinez-botas
,
R. F.
, 2005, “
Jet Impingement on a Dimpled Surface With Different Crossflow Schemes
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
161
170
.
39.
Jeffers
,
N.
,
Punch
,
J.
, and
Walsh
,
E.
, “
An Investigation of Thermal and Velocity Fields for a Confined Jet Over the Re Range of 1,000–24,000
,”
ASME
Paper No. HT-2008-56220.
40.
Bar-Cohen
,
A.
, and
Iyengar
,
M.
, 2003, “
Least-Energy Optimization of Air-Cooled Heat Sinks for Sustainable Development
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
26
, pp.
16
25
.
41.
Li
,
C. Y.
, and
Garimella
,
S. V.
, 2001, “
Prandtl-Number Effects and Generalized Correlations for Confined and Submerged Jet Impingement
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
3471
3480
.
You do not currently have access to this content.