A computational study has been performed to predict the heat transfer distribution on the blade tip surface for a representative gas turbine first stage blade. Computational fluid dynamics (CFD) predictions of blade tip heat transfer are compared with test measurements taken in a linear cascade, when available. The blade geometry has an inlet Mach number of 0.3 and an exit Mach number of 0.75, pressure ratio of 1.5, exit Reynolds number based on axial chord of 2.57×106, and total turning of 110 deg. Three blade tip configurations were considered; a flat tip, a full perimeter squealer, and an offset squealer where the rim is offset to the interior of the tip perimeter. These three tip geometries were modeled at three tip clearances of 1.25%, 2.0%, and 2.75% of the blade span. The tip heat transfer results of the numerical models agree well with data. For the case in which side-by-side comparison with test measurements in the open literature is possible, the magnitude of the heat transfer coefficient in the “sweet spot” matches data exactly and shows 20–50% better agreement with experiment than prior CFD predictions of this same case.

1.
Mayle
,
R. E.
, and
Metzger
,
D. E.
, 1982, “
Heat Transfer at the Tip of an Unshrouded Turbine Blade
,”
Proceedings of the Seventh International Heat Transfer Conference
,
Hemisphere
,
Washington, DC
, pp.
87
92
.
2.
Metzger
,
D. E.
,
Bunker
,
R. S.
, and
Chyu
,
M. K.
, 1989, “
Cavity Heat Transfer on a Transverse Grooved Wall in a Narrow Flow Channel
,”
ASME J. Lubr. Technol.
0022-2305,
111
, pp.
73
79
.
3.
Chyu
,
M. K.
,
Moon
,
H. K.
, and
Metzger
,
D. E.
, 1989, “
Heat Transfer in the Tip Region of Grooved Turbine Blades
,”
ASME J. Heat Transfer
0022-1481,
111
, pp.
131
138
.
4.
Bunker
,
R. S.
,
Bailey
,
J. C.
, and
Ameri
,
A.
, 2000, “
Heat Transfer and Flow on the First-Stage Blade Tip of a Power Generation Gas Turbine—Part I: Experimental Results
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
263
271
.
5.
Azad
,
G.
,
Han
,
J. C.
,
Teng
,
S.
, and
Boyle
,
R.
, 2000, “
Heat Transfer and Pressure Distributions on a Gas Turbine Blade Tip
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
717
724
.
6.
Azad
,
G.
,
Han
,
J. C.
, and
Boyle
,
R.
, 2000, “
Heat Transfer and Flow on the Squealer Tip of a Gas Turbine Blade Tip
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
725
732
.
7.
Azad
,
G.
,
Han
,
J. C.
,
Bunker
,
R. S.
, and
Lee
,
C. P.
, 2002, “
Effect of Squealer Geometry Arrangement on a Gas Turbine Blade Tip Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
452
459
.
8.
Kwak
,
J. S.
, and
Han
,
J. C.
, 2003, “
Heat Transfer Coefficients on the Squealer Tip and Near Squealer Tip Regions of a Gas Turbine Blade
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
669
677
.
9.
Nasir
,
H.
,
Ekkad
,
S.
,
Kontrovitz
,
D.
,
Bunker
,
R.
, and
Prakash
,
C.
, 2004, “
Effect of Tip Gap and Squealer Geometry on Detailed Heat Transfer Measurements Over a High Pressure Turbine Rotor Blade Tip
,”
ASME J. Turbomach.
0889-504X,
126
, pp.
221
228
.
10.
Papa
,
M.
,
Goldstein
,
R. J.
, and
Gori
,
F.
, 2003, “
Effects of Tip Geometry and Tip Clearance on the Mass/Heat Transfer From a Large-Scale Gas Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
125
, pp.
90
96
.
11.
Haldeman
,
C. W.
, and
Dunn
,
M. G.
, 2004, “
Heat-Transfer Measurements and Predictions for the Vane and Blade of a Rotating High-Pressure Turbine Stage
,”
ASME J. Turbomach.
0889-504X,
126
, pp.
101
109
.
12.
Ameri
,
A.
, and
Bunker
,
R.
, 2000, “
Heat Transfer and Flow on the First-Stage Blade Tip of a Power Generation Gas Turbine—Part II: Simulation Results
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
272
277
.
13.
Ameri
,
A.
, 2001, “
Heat Transfer and Flow on the Blade Tip of a Gas Turbine Equipped With a Mean-Camberline Strip
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
704
708
.
14.
Holmes
,
D. G.
,
Mitchell
,
B. E.
, and
Lorence
,
C. B.
, 1997, “
Three Dimensional Linearized Navier-Stokes Calculations for Flutter and Forced Response
,”
Proceedings of the Eighth International Symposium on Unsteady Aerodynamics and Aeroelasticity of Turbomachines
, Stockholm, Sweden.
15.
Jameson
,
A.
, 1983, “
Solution of the Euler Equations for Two-Dimensional Transonic Flow by a Multigrid Method
,”
Princeton University
Department of Mechanical and Aerospace Engineering (MAE) Report No. 1613.
16.
Wilcox
,
D. C.
, 1993,
Turbulence Modeling for CFD
,
DCW Industries, Inc.
,
La Canada, CA
.
17.
Tallman
,
J.
, 2004, “
CFD Heat Transfer Predictions for a High-Pressure Turbine Stage
,”
ASME
Paper No. GT2004-53654.
18.
Moelter
,
S. M.
,
Dunn
,
M. G.
,
Haldeman
,
C. W.
,
Bergholz
,
R. F.
, and
Vitt
,
P.
, 2006, “
Heat-Flux Measurements and Predictions for the Blade Tip Region of a High-Pressure Turbine
,”
ASME
Paper No. GT2006-90048.
19.
Wheeler
,
A.
,
Atkins
,
N.
, and
He
,
L.
, 2009, “
Turbine Blade Tip Heat Transfer in Low Speed and High Speed Flows
,”
ASME
Paper No. GT2009-59404.
You do not currently have access to this content.