The feasibility of using a rotating heat pipe to anti-ice the nose cones of small turbofan aero-engines is investigated. A stationary jacket evaporator design was used to transport heat into the rotating heat pipe located along the central fan shaft of the engine. The rotating heat pipe condenser was made an integral part of the nose cone using a high conductivity, lightweight material and the tip of the nose cone. The use of heating channels along the nose cone and passive heat transfer enhancement in the evaporator were also investigated. The computational model used to predict the heat transfer performance is outlined. The overall heat transfer to the nose cone was 0.8–1.2 kW using water in the heat pipe and 0.4–0.75kW using ethanol. The heating channels were not effective due to the small contact area with the nose cone. The heat transfer enhancement in the evaporator increased the total heat transfer modestly and the temperature of the nose cone increased over the contact area made with the high conductivity material. The results show that rotating heat pipes are a feasible nose cone anti-icing technology.

1.
Brown
,
J. M.
,
Raghunathan
,
S.
,
Watterson
,
J. K.
,
Linton
,
A. J.
, and
Riordon
,
D.
, 2002, “
Heat Transfer Correlation for Anti-Icing Systems
,”
J. Aircr.
0021-8669,
39
(
1
), pp.
65
70
.
2.
Cebeci
,
T.
, and
Kafyeke
,
F.
, 2003, “
Aircraft Icing
,”
Annu. Rev. Fluid Mech.
0066-4189,
35
, pp.
11
21
.
3.
Kind
,
R. J.
,
Potapczuk
,
M. G.
,
Feo
,
A.
,
Golia
,
C.
, and
Shah
,
A. D.
, 1998, “
Experimental and Computational Simulation of In-Flight Icing Phenomena
,”
Prog. Aerosp. Sci.
0376-0421,
34
, pp.
257
345
.
4.
Bourgault
,
Y.
,
Boutanios
,
Z.
, and
Habashi
,
W. G.
, 2000, “
Three-Dimensional Eulerian Approach to Droplet Impingement Simulation Using FENSAP-ICE, Part 1: Model, Algorithm, and Validation
,”
J. Aircr.
0021-8669,
37
(
1
), pp.
95
103
.
5.
Al-Khalil
,
K. M.
,
Keith
,
T. G.
, Jr.
, and
DeWitt
,
K. J.
, 1997, “
Icing Calculations on a Typical Commercial Jet Engine Inlet Nacelle
,”
J. Aircr.
0021-8669,
34
(
1
), pp.
87
93
.
6.
Kreith
,
F.
, 1968, “
Convection Heat Transfer in Rotating Systems
,”
Adv. Heat Transfer
0065-2717,
5
, pp.
129
251
.
7.
Reed
,
H. L.
, and
Saric
,
W. S.
, 1989, “
Stability of Three-Dimensional Boundary Layers
,”
Annu. Rev. Fluid Mech.
0066-4189,
21
, pp.
235
284
.
8.
Kobayashi
,
R.
, 1994, “
Review: Laminar-to-Turbulent Transition of Three-Dimensional Boundary Layers on Rotating Bodies
,”
ASME J. Fluids Eng.
0098-2202,
116
, pp.
200
211
.
9.
Gray
,
V. H.
, 1969, “
The Rotating Heat Pipe
,”
ASME
Paper No. 69-HT-19.
10.
Faghri
,
A.
, 1995,
Heat Pipe Science and Technology
,
Taylor & Francis
,
Washington, DC
.
11.
Ballback
,
L. J.
, 1969, “
The Operation of a Rotating Wickless Heat Pipe
,” MS thesis, Monterey California Naval Post-Graduate School, (AD 701674).
12.
Daniels
,
T. C.
, and
Al-Jumaily
,
F. K.
, 1975, “
Investigation of the Factors Affecting the Performance of a Rotating Heat Pipe
,”
Int. J. Heat Mass Transfer
0017-9310,
18
, pp.
961
973
.
13.
Li
,
H. M.
,
Liu
,
C. Y.
, and
Damodaran
,
M.
, 1993, “
Analytical Study of the Flow and Heat Transfer in a Rotating Heat Pipe
,”
Heat Recovery Syst. CHP
0890-4332,
13
(
2
), pp.
115
122
.
14.
Streby
,
M. A.
,
Ponnappan
,
R.
,
Leland
,
J. E.
, and
Beam
,
J. E.
, 1996, “
Design and Testing of a High Speed Rotating Heat Pipe
,” IEEE Paper No. 96301.
15.
Ponnappan
,
R.
, and
Leland
,
J. E.
, 1998, “
Rotating Heat Pipe for High Speed Motor/Generator Cooling
,” SAE Paper No. 981287.
16.
Ponnappan
,
R.
, and
Leland
,
J. E.
, 1994, “
Rotating Heat Pipe for Cooling of Rotors in Advanced Generators
,”
AIAA/ASME
Paper No. 94-2033.
17.
Ponnappan
,
R.
, and
Leland
,
J. E.
, 1995, “
High Speed Rotating Heat Pipe for Aircraft Applications
,”
Aerospace Atlantic Conference
, SAE Paper No. 951437.
18.
Ponnappan
,
R.
,
He
,
Q.
, and
Leland
,
J. E.
, 1998, “
Test Results of Water and Methanol High-Speed Rotating Heat Pipes
,”
J. Thermophys. Heat Transfer
0887-8722,
12
(
3
), pp.
391
397
.
19.
Song
,
F.
,
Ewing
,
D.
, and
Ching
,
C. Y.
, 2003, “
Fluid Flow and Heat Transfer Model for High-Speed Rotating Heat Pipes
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
4393
4401
.
20.
Eschweiler
,
J. C.
,
Benton
,
A. M.
, and
Prechshot
,
G. W.
, 1967, “
Boiling and Convective Heat Transfer at High Accelerations
,”
Chemical Engineering Progress Symposium Series
, Vol.
63
, pp.
66
72
.
21.
Axcell
,
B. P.
, and
Thianpong
,
C.
, 2001, “
Convection to Rotating Disks With Rough Surfaces in the Presence of an Axial Flow
,”
Exp. Therm. Fluid Sci.
0894-1777,
25
, pp.
3
11
.
22.
Anderson
,
D. A.
,
Tannehill
,
J. C.
, and
Pletcher
,
R. H.
, 1984,
Computational Fluid Mechanics and Heat Transfer
,
Hemisphere
,
Washington, DC
.
23.
Incopera
,
F. P.
, and
DeWitt
,
D. P.
, 1996,
Introduction to Heat Transfer
,
3rd ed.
,
Wiley
,
New York
.
24.
Sparrow
,
E. M.
, and
Gregg
,
J. L.
, 1959, “
A Theory of Rotating Condensation
,”
ASME J. Heat Transfer
0022-1481,
81
, pp.
113
120
.
25.
Gilchrist
,
S.
, 2005, “
Evaluation of a Novel Aero-Engine Nosecone Anti-Icing System Using a Rotating Heat Pipe
,” MS thesis, McMaster University, Hamilton, Ontario.
26.
Fox
,
R. W.
, and
McDonald
,
A. T.
, 1992,
Introduction to Fluid Mechanics
,
Wiley
,
New York
.
27.
Yasuo
,
M.
, and
Wataru
,
N.
, 1968, “
Convective Heat Transfer in Rotating Radial Circular Pipes (1st Report)
,”
Int. J. Heat Mass Transfer
0017-9310,
11
, pp.
1027
1040
.
28.
Marto
,
P. J.
, 1984,
Heat and Mass Transfer in Rotating Machinery
,
D. E.
Metzger
and
N. H.
Afgan
, eds.,
Hemisphere
,
Washington, DC
.
29.
Gilchrist
,
S.
,
Ching
,
C. Y.
, and
Ewing
,
D.
, 2007, “
Enhanced Heat Transfer in a Taylor Couette Heat Exchanger
,”
J. Enhanced Heat Transfer
1065-5131,
14
, pp.
307
314
.
30.
Maron
,
D. M.
, and
Cohen
,
S.
, 1991, “
Hydrodynamics and Heat/Mass Transfer Near Rotating Surfaces
,”
Adv. Heat Transfer
0065-2717,
21
, pp.
141
183
.
You do not currently have access to this content.