Abstract

Numerical analyses on underground construction in Shanghai require precise values of small-strain stiffness of strata. However, limited data on the small-strain stiffness of Shanghai clays (upper Layers 2–6, deeper Layers 8 and 10) from K0-consolidated undrained triaxial compression (TC) tests are available. This study conducted K0-consolidated undrained TC tests on intact samples of these clays. Attention is paid to the undrained maximum shear stiffness (Gmax) and reference shear strain (γ0.7). Data from other natural clays worldwide with various plasticity indices (Ip) and overconsolidation ratios (OCR) were used to obtain and verify correlations. Analysis showed that both Gmax and γ0.7 depend on mean effective stress (p′), Ip, and OCR. Two empirical relationships between these variables and Gmax and γ0.7 for Shanghai clays were established. γ0.7 decreases with OCR and increases with Ip in static (monotonic) tests. This study also found significant correlation between Gmax and the maximum deviatoric stress (qmax). These relationships can be applied to estimate Gmax and γ0.7 values using easily measurable parameters, providing references for parameter calibration in numerical analysis of geotechnical engineering in soft ground.

References

1.
Li
Q.
,
Ng
C. W. W.
, and
Liu
G. B.
, “
Determination of Small-Strain Stiffness of Shanghai Clay on Prismatic Soil Specimen
,”
Canadian Geotechnical Journal
49
, no. 
8
(August
2012
):
986
993
, https://doi.org/10.1139/t2012-050
2.
Ng
C. W. W.
,
Li
Q.
, and
Liu
G.-B.
, “
Measurements of Small-Strain Inherent Stiffness Anisotropy of Intact Shanghai Soft Clay Using Bender Elements
” (in Chinese),
Chinese Journal of Geotechnical Engineering
35
, no. 
1
(January
2013
):
150
156
.
3.
Zhang
J.
,
Zhang
Y.
,
Li
Q.
, and
Xu
Z. H.
, “
Laboratory Research on Initial Shear Modulus of Shanghai Cohesive Soil
” (in Chinese),
Chinese Journal of Underground Space and Engineering
13
, no. 
2
(
2017
):
337
343
.
4.
Zhang
J.
,
Wang
W.
,
Xu
Z.
, and
Li
Q.
, “
Laboratory Test of Small-Strain Characteristics of Typical Shanghai Cohesive Soils
” (in Chinese),
Rock and Soil Mechanics
38
, no. 
12
(December
2017
):
3590
3596
, https://doi.org/10.16285/j.rsm.2017.12.025
5.
Gu
X.
,
Li
Y.
,
Hu
J.
,
Shi
Z.
,
Liang
F.
, and
Huang
M.
, “
Elastic Shear Stiffness Anisotropy and Fabric Anisotropy of Natural Clays
,”
Acta Geotechnica
17
, no. 
8
(August
2022
):
3229
3243
, https://doi.org/10.1007/s11440-022-01468-x
6.
Liu
X.
,
Zhang
X.
,
Kong
L.
,
Li
X.
, and
Wang
G.
, “
Effect of Cementation on the Small-Strain Stiffness of Granite Residual Soil
,”
Soils and Foundations
61
, no. 
2
(April
2021
):
520
532
, https://doi.org/10.1016/j.sandf.2021.02.001
7.
Wang
F.
,
Li
D.
,
Du
W.
,
Zarei
C.
, and
Liu
Y.
, “
Bender Element Measurement for Small-Strain Shear Modulus of Compacted Loess
,”
International Journal of Geomechanics
21
, no. 
5
(May
2021
): 04021063, https://doi.org/10.1061/(ASCE)GM.1943-5622.0002004
8.
Kantesaria
N.
and
Sachan
A.
, “
Small-Strain Shear Modulus and Yielding Characteristics of Compacted High-Plasticity Clay
,”
Géotechnique
72
, no. 
5
(May
2022
):
424
437
, https://doi.org/10.1680/jgeot.20.P.089
9.
Yan
J.
,
Kong
L.
, and
Wang
J.
, “
Evolution Law of Small Strain Shear Modulus of Expansive Soil: From a Damage Perspective
,”
Engineering Geology
315
(March
2023
): 107017, https://doi.org/10.1016/j.enggeo.2023.107017
10.
Gong
J.
,
Pang
X.
,
Tang
Y.
,
Liu
M.
,
Jiang
J.
, and
Ou
X.
, “
Effects of Particle Shape, Physical Properties and Particle Size Distribution on the Small-Strain Stiffness of Granular Materials: A DEM Study
,”
Computers and Geotechnics
165
(January
2024
): 105903, https://doi.org/10.1016/j.compgeo.2023.105903
11.
Gasparre
A.
and
Coop
M. R.
, “
The Interpretation of Advanced Triaxial Tests for the Assessment of Small Strain Stiffness
,” in
E3S Web of Conferences, vol. 544
(
Paris
:
EDP Sciences
,
2024
),
01018
, https://doi.org/10.1051/e3sconf/202454401018
12.
Niu
Y.
,
Chian
S. C.
,
Li
Y. E.
, and
Fang
G.
, “
Laboratory Small-Strain Stiffness Measurement Using Distributed Acoustic Sensing
,”
Geotechnical Testing Journal
46
, no. 
5
(September
2023
):
787
804
, https://doi.org/10.1520/GTJ20220204
13.
Atkinson
J. H.
and
Sallfors
G.
, “
Experimental Determination of Soil Properties
,” in
Proceedings of the 10th ECSMFE, Vol. 3
(
Rotterdam, the Netherlands
:
A. A. Balkema
,
1991
),
915
956
.
14.
Santos
J. A.
and
Correia
A. G.
, “
Reference Threshold Shear Strain of Soil, Its Application to Obtain a Unique Strain-Dependent Shear Modulus Curve for Soil
,” in
Proceedings of the 15th International Conference on Soil Mechanics and Geotechnical Engineering
(
Boca Raton, FL
:
CRC Press
,
2001
),
267
270
.
15.
Seed
H. B.
and
Idriss
I. M.
,
Soil Moduli and Damping Factors for Dynamic Response Analyses, Report No. EERC 70-10
(
Berkeley, CA
:
Earthquake Engineering Research Center, University of California
,
1970
).
16.
Hardin
B. O.
and
Drnevich
V. P.
, “
Shear Modulus and Damping in Soils: Measurement and Parameter Effects (Terzaghi Leture)
,”
Journal of the Soil Mechanics and Foundations Division
98
, no. 
6
(June
1972
):
603
624
, https://doi.org/10.1061/JSFEAQ.0001756
17.
Benz
T.
, “
Small-Strain Stiffness of Soils and Its Numerical Consequences
” (PhD diss.,
University of Stuttgart, Institute of Geotechnical Engineering
,
2007
).
18.
Hardin
B. O.
and
Richart
F. E.
, “
Elastic Wave Velocities in Granular Soils
,”
Journal of the Soil Mechanics and Foundations Division
89
, no. 
1
(February
1963
):
33
65
, https://doi.org/10.1061/JSFEAQ.0000493
19.
Iwasaki
T.
,
Tatsuoka
F.
, and
Takagi
Y.
, “
Shear Moduli of Sands under Cyclic Torsional Shear Loading
,”
Soils and Foundation
18
, no. 
1
(March
1978
):
39
56
, https://doi.org/10.3208/sandf1972.18.39
20.
Tatsuoka
F.
,
Iwasaki
T.
, and
Takagi
Y.
, “
Hysteretic Damping of Sands under Cyclic Loading and Its Relation to Shear Modulus
,”
Soils and Foundation
18
, no. 
2
(June
1978
):
25
40
, https://doi.org/10.3208/sandf1972.18.2_25
21.
Ishibashi
I.
and
Zhang
X.
, “
Unified Dynamic Shear Moduli and Damping Ratios of Sand and Clay
,”
Soils and Foundations
33
, no. 
1
(March
1993
):
182
191
, https://doi.org/10.3208/sandf1972.33.182
22.
Darendeli
M. B.
, “
Development of a New Family of Normalized Modulus Reduction and Material Damping Curves
” (PhD diss.,
University of Texas at Austin
,
2001
).
23.
Stokoe
K. H.
 II
,
Darendeli
M. B.
,
Gilbert
R. B.
,
Menq
F.-Y.
, and
Choi
W. K.
, “
Development of a New Family of Normalized Modulus Reduction and Material Damping Curves
,” in
Proceedings of the NSF/PEEF International Workshop on Uncertainties in Nonlinear Soil Properties and their Impact on Modeling Dynamic Soil Response
(Berkeley, CA: University of California at Berkeley,
2004
).
24.
Lo Presti
D.
,
Pallara
O.
,
Lancellotta
R.
,
Armandi
M.
, and
Maniscalco
R.
, “
Monotonic and Cyclic Loading Behavior of Two Sands at Small Strains
,”
Geotechnical Testing Journal
16
, no. 
4
(December
1993
):
409
424
, https://doi.org/10.1520/GTJ10281J
25.
Biarez
J.
and
Hicher
P.-Y.
,
Elementary Mechanics of Soil Behaviour: Saturated Remoulded Soils
(
Rotterdam, the Netherlands
:
A. A. Balkema
,
1994
).
26.
Lo Presti
D.
and
Jamiolkowski
M.
, “
Discussion: Estimate of Elastic Shear Modulus in Holocene Soil Deposits
,”
Soils and Foundations
38
(
1998
):
263
265
.
27.
Fioravante
V.
, “
Anisotropy of Small-Strain Stiffness of Ticino and Kenya Sands from Seismic Wave Propagation Measured in Triaxial Testing
,”
Soils and Foundations
40
, no. 
4
(August
2000
):
129
142
, https://doi.org/10.3208/sandf.40.4_129
28.
Vucetic
M.
and
Dobry
R.
, “
Effect of Soil Plasticity on Cyclic Response
,”
Journal of Geotechnical Engineering
117
, no. 
1
(January
1991
):
89
107
, https://doi.org/10.1061/(ASCE)0733-9410(1991)117:1(89)
29.
Hardin
B. O.
and
Black
W. L.
, “
Closure to ‘Vibration Modulus of Normally Consolidated Clay,’
Journal of the Soil Mechanics and Foundations Division
95
, no. 
6
(November
1969
):
1531
1537
, https://doi.org/10.1061/JSFEAQ.0001364
30.
Hardin
B. O.
and
Black
W. L.
, “
Vibration Modulus of Normally Consolidated Clay
,”
Journal of the Soil Mechanics and Foundations Division
94
, no. 
2
(March
1968
):
353
369
, https://doi.org/10.1061/JSFEAQ.0001100
31.
Marcuson
W. F.
 III
and
Wahls
H. E.
, “
Time Effects on Dynamic Shear Modulus of Clays
,”
Journal of the Soil Mechanics and Foundations Division
98
, no. 
12
(December
1972
):
1359
1373
, https://doi.org/10.1061/JSFEAQ.0001819
32.
Kim
T. C.
and
Novak
M.
, “
Dynamic Properties of Some Cohesive Soils of Ontario
,”
Canadian Geotechnical Journal
18
, no. 
3
(August
1981
):
371
389
, https://doi.org/10.1139/t81-044
33.
Kokusho
T.
,
Yoshida
Y.
, and
Esashi
Y.
, “
Dynamic Properties of Soft Clay for Wide Strain Range
,”
Soils and Foundations
22
, no. 
4
(December
1982
):
1
18
, https://doi.org/10.3208/sandf1972.22.4_1
34.
Stokoe
K. H.
 II
,
Hwang
S. K.
,
Lee
J. K.
, and
Andrus
R. D.
, “
Effects of Various Parameters on the Stiffness and Damping of Soils at Small to Medium Strains
,” in
Proceedings of the International Symposium on Pre-failure Deformation of Geomaterials
(
Rotterdam, the Netherlands
:
A. A. Balkema
,
1994
),
785
816
.
35.
Jamiolkowski
M.
,
Lancellotta
R.
, and
Lo Presti
D. C. F.
, “
Remarks on the Stiffness at Small Strains of Six Italian Clays
,” in
Proceedings of the International Symposium on Pre-failure Deformation of Geomaterials
(
Rotterdam, the Netherlands
:
A. A. Balkema
,
1994
),
95
114
.
36.
Viggiani
G.
and
Atkinson
J. H.
, “
Stiffness of Fine-Grained Soils at Very Small Strains
,”
Géotechnique
45
, no. 
2
(June
1995
):
249
265
, https://doi.org/10.1680/geot.1995.45.2.249
37.
Shibuya
S.
and
Tanaka
H.
, “
Estimate of Elastic Shear Modulus in Holocene Soil Deposits
,”
Soils and Foundations
36
, no. 
4
(December
1996
):
45
55
, https://doi.org/10.3208/sandf.36.4_45
38.
D’Elia
B.
and
Lanzo
G.
, “
Laboratory and Field Determinations of Small-Strain Shear Modulus of Natural Soil Deposits
,” in
Proceedings of the 11th World Conference on Earthquake Engineering
(
Oxford
:
Pergamon
,
1996
).
39.
Vrettos
C.
and
Savidis
S.
, “
Shear Modulus and Damping for Mediterranean Sea Clays of Medium Plasticity
,” in
Earthquake Geotechnical Engineering
(
Boca Raton, FL
:
CRC Press
,
1999
),
71
76
.
40.
Vardanega
P. J.
and
Bolton
M. D.
, “
Stiffness of Clays and Silts: Normalizing Shear Modulus and Shear Strain
,”
Journal of Geotechnical and Geoenvironmental Engineering
139
, no. 
9
(September
2013
):
1575
1589
, https://doi.org/10.1061/(ASCE)GT.1943-5606.0000887
41.
Sas
W.
,
Gabryś
K.
, and
Szymański
A.
, “
Experimental Studies of Dynamic Properties of Quaternary Clayey Soils
,”
Soil Dynamics and Earthquake Engineering
95
(April
2017
):
29
39
, https://doi.org/10.1016/j.soildyn.2017.01.031
42.
Shanghai Geological Environmental Atlas Editorial Board
Shanghai Geological Environmental Atlas (SGEA)
, (Beijing:
Geology Press
,
2002
).
43.
Qiu
J. B.
and
Li
X.
, “
Quaternary Stratigraphic Subdivision
,”
Quaternary Strata and Sedimentary Environment in Shanghai
(
Shanghai
:
Shanghai Scientific and Technical Publishers
, 2007),
69
126
.
44.
Lan
L.
,
Ye
G.
,
Zhu
W.
, and
Zhang
Q.
, “
Small-Strain Characterization of Shanghai Clays by Triaxial Compression Tests
,” in
IOP Conference Series: Earth and Environmental Science, vol. 1330
(
Bristol, UK
:
IOP Publishing
,
2024
), 012021, https://doi.org/10.1088/1755-1315/1330/1/012021.
45.
Wu
C.-J.
,
Ye
G.-L.
,
Zhang
L.-L.
,
Bishop
D.
, and
Wang
J.-H.
, “
Depositional Environment and Geotechnical Properties of Shanghai Clay: A Comparison with Ariake and Bangkok Clays
,”
Bulletin of Engineering Geology and the Environment
74
, no. 
3
(August
2015
):
717
732
, https://doi.org/10.1007/s10064-014-0670-0
46.
Ohtsubo
M.
,
Egashira
K.
,
Koumoto
T.
, and
Bergado
D. T.
, “
Mineralogy and Chemistry, and Their Correlation with the Geotechnical Index Properties of Bangkok Clay: Comparison with Ariake Clay
,”
Soils and Foundations
40
, no. 
1
(February
2000
):
11
21
, https://doi.org/10.3208/sandf.40.11
47.
Ohtsubo
M.
,
Egashira
K.
,
Tanaka
H.
, and
Mishima
O.
, “
Clay Minerals and Geotechnical Index Properties of Marine Clays in East Asia
,”
Marine Georesources & Geotechnology
20
, no. 
4
(
2002
):
223
235
, https://doi.org/10.1080/03608860290051921
48.
Mitchell
J. K.
and
Soga
K.
,
Fundamentals of Soil Behavior
, 3rd ed. (
New York
:
John Wiley & Sons
,
2005
).
49.
Becker
D. E.
,
Crooks
J. H. A.
,
Been
K.
, and
Jefferies
M. G.
, “
Work as a Criterion for Determining In Situ and Yield Stresses in Clays
,”
Canadian Geotechnical Journal
24
, no. 
4
(November
1987
):
549
564
, https://doi.org/10.1139/t87-070
50.
Hardin
B. O.
and
Drnevich
V. P.
, “
Shear Modulus and Damping in Soils: Design Equations and Curves
,”
Journal of the Soil Mechanics and Foundations Division
98
, no. 
7
(July
1972
):
667
692
, https://doi.org/10.1061/JSFEAQ.0001760
51.
Ye
G.-L.
and
Ye
B.
, “
Investigation of the Overconsolidation and Structural Behavior of Shanghai Clays by Element Testing and Constitutive Modeling
,”
Underground Space
1
, no. 
1
(September
2016
):
62
77
, https://doi.org/10.1016/j.undsp.2016.08.001
52.
Zhang
S.
,
Ye
G.
,
Zhen
L.
,
Li
M.
, and
Chen
C.
, “
Constitutive Model of Soft Soil after Considering Stiffness Decay Characteristics under Small Strain
” (in Chinese),
Journal of Shanghai Jiao Tong University
53
, no. 
5
(May
2019
):
535
539
, https://doi.org/10.16183/j.cnki.jsjtu.2019.05.004
53.
Hardin
B. O.
and
Blandford
G. E.
, “
Elasticity of Particulate Materials
,”
Journal of Geotechnical Engineering
115
, no. 
6
(June
1989
):
788
805
, https://doi.org/10.1061/(ASCE)0733-9410(1989)115:6(788)
54.
Piriyakul
K.
and
Haegeman
W.
, “
Void Ratio Function for Elastic Shear Moduli for Boom Clay
,”
Géotechnique
57
, no. 
2
(
2007
):
245
248
, https://doi.org/10.1680/geot.2007.57.2.245
55.
Nishimura
S.
, “
Cross-Anisotropic Deformation Characteristics of Natural Sedimentary Clays
,”
Géotechnique
64
, no. 
12
(December
2014
):
981
996
, https://doi.org/10.1680/geot.14.P.088
56.
Andréasson
B. A.
, “
Deformation Characteristics of Soft, High-Plastic Clays under Dynamic Loading Conditions
” (PhD diss.,
Chalmers University of Technology
,
1979
).
57.
Larsson
R.
and
Mulabdić
M.
,
Shear Moduli in Scandinavian Clay, Report No. 40
(
Linköping, Sweden
:
Swedish Geotechnical Institute
,
1991
).
58.
Taukoor
V.
,
Rutherford
C. J.
, and
Olson
S. M.
, “
A Semi-empirical Relationship for the Small-Strain Shear Modulus of Soft Clays
,” in
E3S Web of Conferences
, vol.
92
(
Les Ulis, France
:
EDP Sciences
,
2019
), 04005, https://doi.org/10.1051/e3sconf/20199204005
59.
Rampello
S.
and
Silvestri
F.
, “
The Stress-Strain Behaviour of Natural and Reconstituted Samples of Two oversonsolidated Clays
,” in
Geotechnical Engineering of Hard Soils-Soft Rocks
, ed.
Anagnostopoulos
A.
, (
Rotterdam, the Netherlands
:
A. A. Balkema
,
1993
),
769
778
.
60.
Soga
K.
, “
Mechanical Behaviour and Constitutive Modelling of Natural Structured Soils
” (PhD diss.,
University of California at Berkeley
,
1994
).
61.
Shibuya
S.
and
Mitachi
T.
, “
Small Strain Shear Modulus of Clay Sedimentation in a State of Normal Consolidation
,”
Soils and Foundations
34
, no. 
4
(December
1994
):
67
77
, https://doi.org/10.3208/sandf1972.34.4_67
62.
Doroudian
M.
and
Vucetic
M.
,
Results of Geotechnical Laboratory Tests on Soil Samples from the UC Santa Barbara Campus, UCLA Research Report No. ENG-99–203
(Los Angeles, CA: Civil and Environmental Engineering Department, University of California,
1999
).
63.
Teachavorasinskun
S.
,
Thongchim
P.
, and
Lukkunaprasit
P.
, “
Shear Modulus and Damping of Soft Bangkok Clays
,”
Canadian Geotechnical Journal
39
, no. 
5
(October
2002
):
1201
1208
, https://doi.org/10.1139/t02-048
64.
Ushev
E.
, “
Laboratory Investigation of the Mechanical Properties of Cowden Till under Static and Cyclic Conditions
” (PhD diss.,
Imperial College London
,
2018
).
65.
Rampello
S.
,
Viggiani
G. M. B.
, and
Amorosi
A.
, “
Small-Strain Stiffness of Reconstituted Clay Compressed along Constant Triaxial Effective Stress Ratio Paths
,”
Géotechnique
47
, no. 
3
(June
1997
):
475
489
, https://doi.org/10.1680/geot.1997.47.3.475
66.
Zhang
J.
,
Andrus
R. D.
, and
Juang
C. H.
, “
Normalized Shear Modulus and Material Damping Ratio Relationships
,”
Journal of Geotechnical and Geoenvironmental Engineering
131
, no. 
4
(April
2005
):
453
464
, https://doi.org/10.1061/(ASCE)1090-0241(2005)131:4(453)
67.
Likitlersuang
S.
,
Teachavorasinskun
S.
,
Surarak
C.
,
Oh
E.
, and
Balasubramaniam
A.
, “
Small Strain Stiffness and Stiffness Degradation Curve of Bangkok Clays
,”
Soils and Foundations
53
, no. 
4
(August
2013
):
498
509
, https://doi.org/10.1016/j.sandf.2013.06.003
68.
Mayne
P. W.
, “
Stress-Strain-Strength-Flow Parameters from Enhanced In-Situ Tests
,” in
Proceedings of International Conference on In-Situ Measurement of Soil Properties and Case Histories
(
Bandung, Indonesia
:
Graduate Program, Parahyangan Catholic University
,
2001
),
27
48
.
69.
Shibuya
S.
,
Tamrakar
S. B.
, and
Theramast
N.
, “
Geotechnical Site Characterization on Engineering Properties of Bangkok Clay
,”
Geotechnical Engineering
32
, no. 
3
(December
2001
):
139
152
.
70.
Hight
D. W.
,
Paul
M. A.
,
Barras
B. F.
,
Powell
J. J. M.
,
Nash
D. F. T.
,
Smith
P. R.
,
Jardine
R. J.
, and
Edwards
D. H.
, “
The Characterisation of the Bothkennar Clay
,” in
Characterisation and Engineering Properties of Natural Soils
, vol.
1
(
Rotterdam, the Netherlands
:
A. A. Balkema
,
2003
),
543
597
.
71.
Hight
D. W.
,
McMillan
F.
,
Powell
J. J. M.
,
Jardine
R. J.
, and
Allenou
C. P.
, “
Some Characteristics of London Clay
,” in
Characterisation and Engineering Properties of Natural Soils
, vol.
2
(
Rotterdam, the Netherlands
:
A. A. Balkema
,
2003
),
851
907
.
72.
Hight
D. W.
,
Gasparre
A.
,
Nishimura
S.
,
Minh
N. A.
,
Jardine
R. J.
, and
Coop
M. R.
, “
Characteristics of the London Clay from the Terminal 5 Site at Heathrow Airport
,”
Géotechnique
57
, no. 
1
(February
2007
):
3
18
, https://doi.org/10.1680/geot.2007.57.1.3
73.
Anderson
D. G.
and
Woods
R. D.
, “
Time-Dependent Increase in Shear Modulus of Clay
,”
Journal of the Geotechnical Engineering Division
102
, no. 
5
(May
1976
):
525
537
, https://doi.org/10.1061/AJGEB6.0000273
This content is only available via PDF.
You do not currently have access to this content.