Abstract

Open-graded asphalt friction courses (OGAFCs) offer benefits in terms of the absence of rainwater film, high skid resistance, low tire-pavement interaction noise, and better visibility under wet weather. Among the critical problems of binder draindown, raveling, and clogging encountered with OGAFCs, binder draindown is the one that can be largely resolved by using fiber with appropriate length, dosage, and type. With the growing interest in sustainable materials in road construction, the application of agro waste–derived natural fibers in pavements forms an innovative domain of research. In this study, four agro waste–derived biofibers, including banana fiber, sisal fiber, sunnhemp fiber, and pineapple fiber, were investigated as stabilizing agents to address the binder draindown challenge within OGAFC mixes. A response surface methodology (RSM) was used to optimize the fiber parameters of four agro waste–derived fibers for their application in OGAFC mixtures fabricated with unmodified and polymer-modified binders. RSM-based models were developed using three distinct input parameters: fiber lengths ranging from 3 to 12 mm, fiber dosages ranging from 0.15 to 0.45 %, and binder dosages ranging from 5.5 to 6.5 %, as well as one output parameter, binder draindown. The RSM-based developed regression models were statistically significant, with average R2 and adjusted R2 values higher than 0.9830 and 0.9695, respectively. Furthermore, the desirability function used to optimize fiber parameters yielded a desirability value greater than 0.84 for each developed model, indicating an exceptional level of predictive precision. Finally, during the model validation phase, an average percentage error deviation of 5.61 % demonstrated the efficacy of the RSM approach for fiber parameter optimization. The RSM-based optimization for each model with both binders, followed by parameter validation, yielded optimal values of 0.45 %, 9 mm, and 5.5 % for fiber dosage, fiber length, and binder dosages, respectively.

References

1.
Gu
F.
,
Watson
D.
,
Moore
J.
, and
Tran
N.
, “
Evaluation of the Benefits of Open-Graded Friction Course: Case Study
,”
Construction and Building Materials
189
(
2018
):
131
143
, https://doi.org/10.1016/j.conbuildmat.2018.08.185
2.
Sharma
A.
,
Choudhary
R.
, and
Kumar
A.
, “
Laboratory Investigation of Draindown Behavior of Open-Graded Friction-Course Mixtures Containing Banana and Sugarcane Bagasse Natural Fibers
,”
Transportation Research Record
2678
, no. 
1
(May
2023
):
366
380
, https://doi.org/10.1177/03611981231170875
3.
Afonso
M. L.
,
Dinis-Almeida
M.
, and
Fael
C. S.
, “
Study of the Porous Asphalt Performance with Cellulosic Fibers
,”
Construction and Building Materials
135
(
2017
):
104
111
, https://doi.org/10.1016/j.conbuildmat.2016.12.222
4.
Putman
B. J.
and
Lyons
K. R.
, “
Laboratory Evaluation of Long-Term Draindown of Porous Asphalt Mixtures
,”
Journal of Materials in Civil Engineering
27
, no. 
10
(January
2015
): 04015009, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001260
5.
Hassan
H. F.
and
Al-Jabri
K. S.
, “
Effect of Organic Fibers on Open-Graded Friction Course Mixture Properties
,”
The International Journal of Pavement Engineering
6
, no. 
1
(May
2007
):
67
75
, https://doi.org/10.1080/10298430500087936
6.
Tripathi
N.
,
Hills
C. D.
,
Singh
R. S.
, and
Atkinson
C. J.
, “
Biomass Waste Utilization in Low-Carbon Products: Harnessing a Major Potential Resource
,”
npj Climate and Atmospheric Science
2
, no. 
1
(October
2019
): 35, https://doi.org/10.1038/s41612-019-0093-5
7.
Wang
F.
,
Cheng
Z.
,
Reisner
A.
, and
Liu
Y.
, “
Compliance with Household Solid Waste Management in Rural Villages in Developing Countries
,”
Journal of Cleaner Production
202
(
2018
):
293
298
, https://doi.org/10.1016/j.jclepro.2018.08.135
8.
Singh
Y.
and
Sidhu
H. S.
, “
Management of Cereal Crop Residues for Sustainable Rice-Wheat Production System in the Indo-Gangetic Plains of India
,”
Proceedings of the Indian National Science Academy
80
, no. 
1
(March
2014
):
95
114
, https://doi.org/10.16943/ptinsa/2014/v80i1/55089
9.
Zabed
H.
,
Sahu
J. N.
,
Boyce
A. N.
, and
Faruq
G.
, “
Fuel Ethanol Production from Lignocellulosic Biomass: An Overview on Feedstocks and Technological Approaches
,”
Renewable and Sustainable Energy Reviews
66
(
2016
):
751
774
, https://doi.org/10.1016/j.rser.2016.08.038
10.
Subramaniam
T.
,
Krishnan
S. G.
,
Ansari
M. N. M.
,
Hamid
N. A.
, and
Khalid
M.
, “
Recent Progress on the Super Capacitive Performance of Agro Waste Fibers: A Review
,”
Critical Reviews in Solid State and Material Sciences
48
, no. 
2
(March
2022
):
289
331
, https://doi.org/10.1080/10408436.2022.2052797
11.
Yeow
P. K.
,
Wong
S. W.
, and
Hadibarata
T.
, “
Removal of Azo and Anthraquinone Dye by Plant Biomass as Adsorbent–A Review
,”
Biointerface Research in Applied Chemistry
11
, no. 
1
(February
2021
):
8218
8232
, https://doi.org/10.33263/BRIAC111.82188232
12.
Lohan
S. K.
,
Jat
H. S.
,
Yadav
A. K.
,
Sidhu
H. S.
,
Jat
M. L.
,
Choudhary
M.
, and
Sharma
P. C.
, “
Burning Issues of Paddy Residue Management in North-West States of India
,”
Renewable and Sustainable Energy Reviews
81
, Part 1 (January
2018
):
693
706
, https://doi.org/10.1016/j.rser.2017.08.057
13.
Jain
N.
,
Bhatia
A.
, and
Pathak
H.
, “
Emission of Air Pollutants from Crop Residue Burning in India
,”
Aerosol and Air Quality Research
14
, no. 
1
(February
2014
):
422
430
, https://doi.org/10.4209/aaqr.2013.01.0031
14.
Divya
P.
and
Rajalakshmi
R.
, “
Renewable Low-Cost Green Functional Mesoporous Electrodes from Solanum Lycopersicum Leaves for Supercapacitors
,”
Journal of Energy Storage
27
(
2020
): 101149, https://doi.org/10.1016/j.est.2019.101149
15.
Mohanty
A. K.
,
Misra
M.
, and
Drzal
L. T.
, eds.,
Natural Fibers, Biopolymers, and Biocomposites
(
Boca Raton, FL
:
CRC Press
,
2005
), https://doi.org/10.1201/9780203508206
16.
Scarlat
N.
,
Dallemand
J. F.
,
Monforti-Ferrario
F.
, and
Nita
V.
, “
The Role of Biomass and Bioenergy in a Future Bioeconomy: Policies and Facts
,”
Environmental Development
15
(
2015
):
3
34
, https://doi.org/10.1016/j.envdev.2015.03.006
17.
Rangappa
S. M.
,
Siengchin
S.
,
Parameswaranpillai
J.
,
Jawaid
M.
, and
Ozbakkaloglu
T.
, “
Lignocellulosic Fiber Reinforced Composites: Progress, Performance, Properties, Applications, and Future Perspectives
,”
Polymer Composites
43
, no. 
2
(November
2021
):
645
691
, https://doi.org/10.1002/pc.26413
18.
Sanjay
M. R.
,
Arpitha
G. R.
,
Naik
L. L.
,
Gopalakrishnan
K.
, and
Yogesha
B. J. N. R.
, “
Applications of Natural Fibers and Its Composites: An Overview
,”
Natural Resources
7
, no. 
3
(March
2016
):
108
114
, https://doi.org/10.4236/nr.2016.73011
19.
Kumar
P.
,
Sikdar
P. K.
,
Bose
S.
, and
Chandra
S.
, “
Use of Jute Fiber in Stone Matrix Asphalt
,”
Road Materials and Pavement Design
5
, no. 
2
(November
2003
):
239
249
, https://doi.org/10.1080/14680629.2004.9689971
20.
Sheng
Y.
,
Zhang
B.
,
Yan
Y.
,
Li
H.
,
Chen
Z.
, and
Chen
H.
, “
Laboratory Investigation on the Use of Bamboo Fiber in Asphalt Mixtures for Enhanced Performance
,”
Arabian Journal for Science and Engineering
44
, no. 
5
(May
2019
):
4629
4638
, https://doi.org/10.1007/s13369-018-3490-x
21.
Meneses
J. P.
,
Lutif Teixeira
J. E. S.
,
Alvarez
A. E.
,
Aragão
F. T. S.
, and
Fritzen
M. A.
, “
Exploratory Study on the Addition of Sugarcane Bagasse Fibers to Permeable Friction Course Mixtures
,”
Journal of Materials in Civil Engineering
33
, no. 
9
(July
2021
): 04021241, https://doi.org/10.1061/(ASCE)MT.1943-5533.0003849
22.
Kar
D.
,
Giri
J. P.
, and
Panda
M.
, “
Performance Evaluation of Bituminous Paving Mixes Containing Sisal Fiber as an Additive
,”
Transportation Infrastructure Geotechnology
6
, no. 
3
(May
2019
):
189
206
, https://doi.org/10.1007/s40515-019-00079-6
23.
Khasawneh
M. A.
and
Alyaseen
S. K.
, “
Analytic Methods to Evaluate Bituminous Mixtures Enhanced With Coir/Coconut Fiber for Highway Materials
,”
Materials Today: Proceedings
33
(
2020
):
1752
1757
, https://doi.org/10.1016/j.matpr.2020.04.870
24.
Food and Agriculture Organization of the United Nations “
FAOSTAT
,”
FAO
,
2022
, https://web.archive.org/web/20240403005646/https://www.fao.org/faostat/en/#data/QCL
25.
Fouda-Mbanga
B. G.
and
Tywabi-Ngeva
Z.
, “
Application of Pineapple Waste to the Removal of Toxic Contaminants: A Review
,”
Toxics
10
, no. 
10
(September
2022
): 561, https://doi.org/10.3390/toxics10100561
26.
Sarangi
P. K.
,
Singh
A. K.
,
Srivastava
R. K.
, and
Gupta
V. K.
, “
Recent Progress and Future Perspectives for Zero Agriculture Waste Technologies: Pineapple Waste as a Case Study
,”
Sustainability
15
, no. 
4
(February
2023
): 3575, https://doi.org/10.3390/su15043575
27.
Mostafa
M.
and
Uddin
N.
, “
Effect of Banana Fibers on the Compressive and Flexural Strength of Compressed Earth Blocks
,”
Buildings
5
, no. 
1
(March
2015
):
282
296
, https://doi.org/10.3390/buildings5010282
28.
Balda
S.
,
Sharma
A.
,
Capalash
N.
, and
Sharma
P.
, “
Banana Fiber: A Natural and Sustainable Bioresource for Eco-friendly Applications
,”
Clean Technologies and Environmental Policy
23
, no. 
5
(February
2021
):
1389
1401
, https://doi.org/10.1007/s10098-021-02041-y
29.
Pappu
A.
,
Saxena
M.
,
Thakur
V. K.
,
Sharma
A.
, and
Haque
R.
, “
Facile Extraction, Processing, and Characterization of Bio-renewable Sisal Fibers for Multifunctional Applications
,”
Journal of Macromolecular Science, Part A
53
, no. 
7
(May
2016
):
424
432
, https://doi.org/10.1080/10601325.2016.1176443
30.
Sangamithirai
K.
and
Vasugi
N.
, “
Banana Fiber–A Potential Source of Sustainable Textiles
,”
Journal of Applied Horticulture
22
, no. 
2
(
2020
):
133
136
, https://doi.org/10.37855/jah.2020.v22i02.24
31.
Bhandari
H. R.
,
Tripathi
M. K.
,
Chaudhary
B.
, and
Sarkar
S. K.
, “
Sunnhemp Breeding: Challenges and Prospects
,”
Indian Journal of Agricultural Sciences
86
, no. 
11
(November
2016
):
1391
1398
, https://doi.org/10.56093/ijas.v86i11.62879
32.
Sarkar
K. S. S.
, “
Defeating Fusarium Wilt Disease in Sunn Hemp Fiber Crop: A Holistic and Effective Integrated Approach
,”
The Pharma Innovation Journal
12
, no. 
5
(March
2023
):
1650
1656
.
33.
Sengupta
S.
and
Debnath
S.
, “
Development of Sunn Hemp (Crotalaria juncea) Fiber-Based Unconventional Fabric
,”
Industrial Crops and Products
116
(
2018
):
109
115
, https://doi.org/10.1016/j.indcrop.2018.02.059
34.
Haque
R.
,
Saxena
M.
,
Shit
S. C.
, and
Asokan
P.
, “
Fibre-Matrix Adhesion and Properties Evaluation of Sisal Polymer Composite
,”
Fibers and Polymers
16
, no. 
1
(March
2015
):
146
152
, https://doi.org/10.1007/s12221-015-0146-2
35.
Food and Agriculture Organization of the United Nations “
Jute, Kenaf, Sisal, Abaca, Coir and Allied Fibers: Statistical Bulletin
,”
FAO
,
2020
, https://web.archive.org/web/20240403004255/https://www.fao.org/3/cb7927en/cb7927en.pdf
36.
Veerasimman
A.
,
Shanmugam
V.
,
Rajendran
S.
,
Johnson
D. J.
,
Subbiah
A.
,
Koilpichai
J.
, and
Marimuthu
U.
, “
Thermal Properties of Natural Fiber Sisal-Based Hybrid Composites–A Brief Review
,”
Journal of Natural Fibers
19
, no. 
12
(January
2021
):
4696
4706
, https://doi.org/10.1080/15440478.2020.1870619
37.
Thakur
V. K.
and
Thakur
M. K.
, “
Processing and Characterization of Natural Cellulose Fibers/Thermoset Polymer Composites
,”
Carbohydrate Polymers
109
(
2014
):
102
117
, https://doi.org/10.1016/j.carbpol.2014.03.039
38.
Kumari
A.
,
Sarkhel
G.
, and
Choudhury
A.
, “
Effect of Polyvinylpyrrolidone on the Separation Performance of Cellulose Acetate-Polysulfone Blend Membranes
,”
Journal of Macromolecular Science, Part A
50
, no. 
7
(May
2013
):
692
702
, https://doi.org/10.1080/10601325.2013.792200
39.
Mashaan
N.
,
Karim
M.
,
Khodary
F.
,
Saboo
N.
, and
Milad
A.
, “
Bituminous Pavement Reinforcement with Fiber: A Review
,”
CivilEng
2
, no. 
3
(July
2021
):
599
611
, https://doi.org/10.3390/civileng2030033
40.
Wu
S.
,
Haji
A.
, and
Adkins
I.
, “
State of the Art Review on the Incorporation of Fibers in Asphalt Pavements
,”
Road Materials and Pavement Design
24
, no. 
6
(June
2022
):
1559
1594
, https://doi.org/10.1080/14680629.2022.2092022
41.
Sharma
A.
,
Choudhary
R.
, and
Kumar
A.
, “
Stabilization of Open-Graded Asphalt Friction Course Mixes with Plant-Based Natural Fibers
,”
Materials Today: Proceedings
. Published ahead of print, March 22,
2023
, https://doi.org/10.1016/j.matpr.2023.03.202
42.
Cheng
Y.
,
Yu
D.
,
Gong
Y.
,
Zhu
C.
,
Tao
J.
, and
Wang
W.
, “
Laboratory Evaluation on Performance of Eco-friendly Basalt Fiber and Diatomite Compound Modified Asphalt Mixture
,”
Materials
11
, no. 
12
(November
2018
): 2400, https://doi.org/10.3390/ma11122400
43.
Xiong
R.
,
Fang
J.
,
Xu
A.
,
Guan
B.
, and
Liu
Z.
, “
Laboratory Investigation on the Brucite Fiber Reinforced Asphalt Binder and Asphalt Concrete
,”
Construction and Building Materials
83
(
2015
):
44
52
, https://doi.org/10.1016/j.conbuildmat.2015.02.089
44.
Shanbara
H. K.
,
Ruddock
F.
, and
Atherton
W.
, “
Predicting the Rutting Behavior of Natural Fiber-Reinforced Cold Mix Asphalt Using the Finite Element Method
,”
Construction and Building Materials
167
(
2018
):
907
917
, https://doi.org/10.1016/j.conbuildmat.2018.02.072
45.
Box
G. E. P.
and
Wilson
K. B.
, “
On the Experimental Attainment of Optimum Conditions
,” in
Breakthroughs in Statistics
(New York: Springer-Verlag,
1992
),
270
310
.
46.
Moghaddam
T. B.
,
Soltani
M.
,
Karim
M. R.
, and
Baaj
H.
, “
Optimization of Asphalt and Modifier Contents for Polyethylene Terephthalate Modified Asphalt Mixtures Using Response Surface Methodology
,”
Measurement
74
(
2015
):
159
169
, https://doi.org/10.1016/j.measurement.2015.07.012
47.
Yadav
O. P.
,
Thambidorai
G.
,
Nepal
B.
, and
Monplaisir
L.
, “
A Robust Framework for Multi‐response Surface Optimization Methodology
,”
Quality and Reliability Engineering International
30
, no. 
2
(February
2013
):
301
311
, https://doi.org/10.1002/qre.1499
48.
Akay
U.
and
Demirtas
E. A.
, “
Degradation of Burazol Blue ED by Heterogeneous Fenton Process: Simultaneous Optimization by Central Composite Design
,”
Desalination and Water Treatment
56
, no. 
12
(December
2015
):
3346
3356
, https://doi.org/10.1080/19443994.2014.968630
49.
Montgomery
D. C.
,
Design and Analysis of Experiments
, 9th ed. (
Hoboken, NJ
:
Wiley
,
2017
).
50.
Specifications for Open-Graded Friction Course
, IRC 129-2019 (New Delhi, India:
Indian Roads Congress
,
2019
).
51.
Standard Practice for Open-Graded Friction Course (OGFC) Asphalt Mixture Design
, ASTM D7064/D7064M-21 (West Conshohocken, PA:
ASTM International
, approved May 12,
2021
), https://doi.org/10.1520/D7064_D7064M-21
52.
Standard Test Method for Diameter of Wool and Other Animal Fibers by Microprojection
, ASTM D2130-22 (West Conshohocken, PA:
ASTM International
, approved August 11,
2022
), https://doi.org/10.1520/D2130-22
53.
Standard Test Methods for Density Determination of Flax Fiber
, ASTM D8171-18 (West Conshohocken, PA:
ASTM International
, approved February 23,
2018
), https://doi.org/10.1520/D8171-18
54.
Standard Test Method for Tensile Properties of Single Textile Fibers
, ASTM D3822/D3822M-14(2020) (West Conshohocken, PA:
ASTM International
, approved February 21,
2020
), https://doi.org/10.1520/D3822_D3822M-14R20
55.
Standard Test Methods for Moisture in Textiles
, ASTM D2654-22 (West Conshohocken, PA:
ASTM International
, approved September 18,
2023
), https://doi.org/10.1520/D2654-22
56.
Standard Test Method for Water Absorption of Plastics
, ASTM D570-22 (West Conshohocken, PA:
ASTM International
, approved October 12,
2022
), https://doi.org/10.1520/D0570-22
57.
Standard Test Method for Sorbent Performance of Adsorbents for use on Crude Oil and Related Spills
, ASTM F726-17 (West Conshohocken, PA:
ASTM International
, approved December 11,
2017
), https://doi.org/10.1520/F0726-17
58.
Standard Test Method for Compositional Analysis by Thermogravimetry
, ASTM E1131-20 (West Conshohocken, PA:
ASTM International
, approved April 21,
2020
), https://doi.org/10.1520/E1131-20
59.
Standard Test Method for Determination of Draindown Characteristics in Uncompacted Asphalt Mixtures
, ASTM D6390-11(2017) (West Conshohocken, PA:
ASTM International
, approved December 6,
2023
), https://doi.org/10.1520/D6390-11R17
60.
Mohammed
B. S.
and
Adamu
M.
, “
Non-destructive Evaluation of Nano Silica-Modified Roller-Compacted Rubbercrete Using Combined SonReb and Response Surface Methodology
,”
Road Materials and Pavement Design
20
, no. 
4
(January
2018
):
815
835
, https://doi.org/10.1080/14680629.2017.1417891
61.
Myers
R. H.
,
Montgomery
D. C.
,
Vining
G. G.
,
Borror
C. M.
, and
Kowalski
S. M.
, “
Response Surface Methodology: A Retrospective and Literature Survey
,”
Journal of Quality Technology
36
, no. 
1
(February
2018
):
53
77
, https://doi.org/10.1080/00224065.2004.11980252
62.
Dean
A.
,
Voss
D.
, and
Draguljić
D.
, “
Response Surface Methodology
,” in
Design and Analysis of Experiments
(
Cham, Switzerland
:
Springer
,
2017
),
565
614
.
63.
Myers
L. E.
,
McQuay
L. J.
, and
Hollinger
F. B.
, “
Dilution Assay Statistics
,”
Journal of Clinical Microbiology
32
, no. 
3
(March
1994
):
732
739
, https://doi.org/10.1128/jcm.32.3.732-739.1994
64.
Esfe
M. H.
,
Rostamian
H.
,
Shabani-Samghabadi
A.
, and
Arani
A. A. A.
, “
Application of Three-Level General Factorial Design Approach for Thermal Conductivity of MgO/Water Nanofluids
,”
Applied Thermal Engineering
127
(
2017
):
1194
1199
, https://doi.org/10.1016/j.applthermaleng.2017.07.211
65.
Arumbu
P.
and
Srinivasalu
S.
, “
Sustainable Model for High Signal to Noise Ratio to Measure Underwater Acoustic Signal Using Acoustic Doppler Velocimeter
,”
Computers & Electrical Engineering
68
(
2018
):
262
270
, https://doi.org/10.1016/j.compeleceng.2018.03.034
66.
Laghari
R. A.
,
Li
J.
,
Xie
Z.
, and
Wang
S. Q.
, “
Modeling and Optimization of Tool Wear and Surface Roughness in Turning of Al/SiCp Using Response Surface Methodology
,”
3D Research
9
(
2018
):
1
13
, https://doi.org/10.1007/s13319-018-0199-2
67.
Aziminezhad
M.
,
Mahdikhani
M.
, and
Memarpour
M. M.
, “
RSM-Based Modeling and Optimization of Self-Consolidating Mortar to Predict Acceptable Ranges of Rheological Properties
,”
Construction and Building Materials
189
(
2018
):
1200
1213
, https://doi.org/10.1016/j.conbuildmat.2018.09.019
68.
Zhang
P.
,
Cheng
Y. C.
,
Tao
J. L.
, and
Jiao
Y. B.
, “
Molding Process Design for Asphalt Mixture Based on Response Surface Methodology
,”
Journal of Materials in Civil Engineering
28
, no. 
11
(May
2016
): 04016120, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001640
69.
Wang
T.
,
Li
M.
,
Cai
X.
,
Cheng
Z.
,
Zhang
D.
, and
Sun
G.
, “
Multi-objective Design Optimization of Composite Polymerized Asphalt Emulsions for Cold Patching of Pavement Potholes
,”
Materials Today: Communications
35
(
2023
): 105751, https://doi.org/10.1016/j.mtcomm.2023.105751
This content is only available via PDF.
You do not currently have access to this content.