Abstract

In this paper, the resonant column tests were utilized to examine the small-strain stiffness and attenuation of clay-gravel mixture (CGM) under various effective consolidation pressures and freeze-thaw cycles, on the basis of investigating the electrical resistivity variation trend of CGM samples undergoing various freeze-thaw cycles. It is shown that the resistivity of CGM tends to stabilize when the freeze-thaw cycles (N) reach 9, and, thus, the samples after 0, 3, 6, 9, and 12 cycles were selected for resonance column testing. The results show that, once N > 9, the decay in dynamic shear modulus demonstrates a weakened association with N and the stiffness degradation effect of freezing-thawing would be weakened and inhibited by high effective consolidation stress. Additionally, a mathematical model was constructed to predict the maximum dynamic shear modulus (Gmax) in the basis of freeze-thaw cycles and effective consolidation stress. Microscopic analysis results suggest that the freeze-thaw effect on CGM lies in the development of soil aggregates and porosity variation within the fine-grained soil. Compared to gravel soils and frozen soil, the cementation of matrix soil and the effect of blocky structure are considered as fundamental reasons for the improved small-strain stiffness and reduced vulnerability to freeze-thaw cycles of CGM.

References

1.
Clarke
B. G.
,
Engineering of Glacial Deposits
(
Boca Raton, FL
:
CRC Press
,
2017
).
2.
Zhang
Y.
,
Liu
S.
,
Lu
Y.
, and
Li
Z.
, “
Experimental Study of the Mechanical Behavior of Frozen Clay–Gravel Composite
,”
Cold Regions Science and Technology
189
(
2021
): 103340, https://doi.org/10.1016/j.coldregions.2021.103340
3.
Wang
C.
and
Zhan
C. N.
, “
Gravel Content Effect on the Shear Strength of Clay-Gravel Mixtures
,”
Applied Mechanics and Materials
71–78
(
2011
):
4685
4688
, https://doi.org/10.4028/www.scientific.net/AMM.71-78.4685
4.
Fu
Z.
,
Chen
S.
,
Ji
E.
,
Li
G.
, and
Lu
Y.
, “
Using Clay-Gravel Mixtures as the Impervious Core Materials in Rockfill Dams
,” in
Dam Engineering - Recent Advances in Design and Analysis
(
London
:
IntechOpen
,
2021
),
1
25
, https://doi.org/10.5772/intechopen.93206
5.
Huang
X.
,
Zhou
A.
,
Wang
W.
, and
Jiang
P.
, “
Characterization of the Dynamic Properties of Clay–Gravel Mixtures at Low Strain Level
,”
Sustainability
12
, no. 
4
(February
2020
): 1616, https://doi.org/10.3390/su12041616
6.
Jardine
R. J.
,
Potts
D. M.
,
Fourie
A. B.
, and
Burland
J. B.
, “
Studies of the Influence of Non-linear Stress–Strain Characteristics in Soil–Structure Interaction
,”
Géotechnique
36
, no. 
3
(September
1986
):
377
396
, https://doi.org/10.1680/geot.1986.36.3.377
7.
Viggiani
G.
and
Atkinson
J. H.
, “
Stiffness of Fine-Grained Soil at Very Small Strains
,”
Géotechnique
45
, no. 
2
(June
1995
):
249
265
, https://doi.org/10.1680/geot.1995.45.2.249
8.
Jovičić
V.
and
Coop
M. R.
, “
Stiffness of Coarse-Grained Soils at Small Strains
,”
Géotechnique
47
, no. 
3
(June
1997
):
545
561
, https://doi.org/10.1680/geot.1997.47.3.545
9.
Liu
X.
,
Zou
D.
,
Liu
J.
, and
Zheng
B.
, “
Predicting the Small Strain Shear Modulus of Coarse-Grained Soils
,”
Soil Dynamics and Earthquake Engineering
141
(
2021
): 106468, https://doi.org/10.1016/j.soildyn.2020.106468
10.
Tatsuoka
F.
,
Iwasaki
T.
,
Yoshida
S.
,
Fukushima
S.
, and
Sudo
H.
, “
Shear Modulus and Damping by Drained Tests on Clean Sand Specimens Reconstituted by Various Methods
,”
Soils and Foundations
19
, no. 
1
(March
1979
):
39
54
, https://doi.org/10.3208/sandf1972.19.39
11.
Goudarzy
M.
,
Rahman
M. M.
,
König
D.
, and
Schanz
T.
, “
Influence of Non-plastic Fines Content on Maximum Shear Modulus of Granular Materials
,”
Soils and Foundations
56
, no. 
6
(December
2016
):
973
983
, https://doi.org/10.1016/j.sandf.2016.11.003
12.
Matthews
M. C.
,
Hope
V. S.
, and
Clayton
C. R. I.
, “
The Geotechnical Value of Ground Stiffness Determined Using Seismic Methods
,”
Geological Society, London, Engineering Geology Special Publications
12
(
1997
):
113
123
, https://doi.org/10.1144/GSL.ENG.1997.012.01.10
13.
Foti
S.
, “
Small-Strain Stiffness and Damping Ratio of Pisa Clay from Surface Wave Tests
,”
Géotechnique
53
, no. 
5
(June
2003
):
455
461
, https://doi.org/10.1680/geot.2003.53.5.455
14.
Long
M.
and
Donohue
S.
, “
Characterization of Norwegian Marine Clays with Combined Shear Wave Velocity and Piezocone Cone Penetration Test (CPTU) Data
,”
Canadian Geotechnical Journal
47
, no. 
7
(July
2010
):
709
718
, https://doi.org/10.1139/T09-133
15.
Hardin
B. O.
, “
The Nature of Stress-Strain Behavior for Soils
,” in
Earthquake Engineering and Soil Dynamics--Proceedings of the ASCE Geotechnical Engineering Division Specialty Conference Engineering Division Specialty Conference on Earthquake Engineering and Soil Dynamics, Volume 1
(
Reston, VA
:
American Society of Civil Engineers
,
1978
),
3
90
.
16.
Viggiani
G.
, “
Small Strain Stiffness of Fine Grained Soils
” (PhD diss.,
City University London
,
1992
).
17.
Tao
S.
,
Wei
C. F.
, and
Chen
P.
, “
The Effect of Saturation and Shrinkage Deformation on the Small Strain Stiffness of Soils
” (in Chinese),
Chinese Journal of Rock Mechanics and Engineering
39
, no. 
5
(May
2020
):
1023
1031
.
18.
Clayton
C. R. I.
and
Heymann
G.
, “
Stiffness of Geomaterials at Very Small Strains
,”
Géotechnique
51
, no. 
3
(April
2001
):
245
255
, https://doi.org/10.1680/geot.2001.51.3.245
19.
Wang
D.-Y.
,
Ma
W.
,
Niu
Y.-H.
,
Chang
X.-X.
, and
Wen
Z.
, “
Effects of Cyclic Freezing and Thawing on Mechanical Properties of Qinghai–Tibet Clay
,”
Cold Regions Science and Technology
48
, no. 
1
(April
2007
):
34
43
, https://doi.org/10.1016/j.coldregions.2006.09.008
20.
Liu
X.
,
Qin
H.
, and
Lan
H.
, “
On the Relationship between Soil Strength and Wave Velocities of Sandy Loess Subjected to Freeze-Thaw Cycling
,”
Soil Dynamics and Earthquake Engineering
136
(
2020
): 106216, https://doi.org/10.1016/j.soildyn.2020.106216
21.
Zou
W.-L.
,
Ding
L.-Q.
,
Han
Z.
, and
Wang
X.-Q.
, “
Effects of Freeze-Thaw Cycles on the Moisture Sensitivity of a Compacted Clay
,”
Engineering Geology
278
(
2020
): 105832, https://doi.org/10.1016/j.enggeo.2020.105832
22.
Zheng
F.
,
Shao
S.
, and
Wang
S.
, “
Effect of Freeze-Thaw Cycles on the Strength Behavior of Recompacted Loess in True Triaxial Tests
,”
Cold Regions Science and Technology
181
(
2021
): 103172, https://doi.org/10.1016/j.coldregions.2020.103172
23.
Mu
Y. H.
,
Chen
T.
,
Chen
G. L.
,
Niu
F. J.
,
Luo
J.
, and
Bi
G. Q.
,
“Experimental Study on Effect of Cyclic Freeze-Thaw on Shear Behaviors of Clayey Coarse-Grained Soil” (in Chinese)
,
Journal of Disaster Prevention and Mitigation Engineering
39
, no. 
3
(June
2019
):
375
386
, https://doi.org/10.13409/j.cnki.jdpme.2019.03.002
24.
Zhang
Y.-G.
,
Liu
S.-H.
,
Deng
G.
,
Fang
B.-X.
,
Zhang
Y.-Y.
, and
Lu
Y.
, “
Effect of Freeze-Thaw Cycles on Mechanical Behavior of Clay-Gravel Mixtures
,”
Journal of Mountain Science
19
, no. 
12
(December
2022
):
3615
3626
, https://doi.org/10.1007/s11629-022-7317-6
25.
Qi
J.
,
Vermeer
P. A.
, and
Cheng
G.
, “
A Review of the Influence of Freeze-Thaw Cycles on Soil Geotechnical Properties
,”
Permafrost and Periglacial Processes
17
, no. 
3
(July/September
2006
):
245
252
, https://doi.org/10.1002/ppp.559
26.
Xie
S.-B.
,
Qu
J.-J.
,
Lai
Y.-M.
,
Zhou
Z.-W.
, and
Xu
X.-T.
, “
Effects of Freeze-Thaw Cycles on Soil Mechanical and Physical Properties in the Qinghai-Tibet Plateau
,”
Journal of Mountain Science
12
, no. 
4
(July
2015
):
999
1009
, https://doi.org/10.1007/s11629-014-3384-7
27.
Li
G.-Y.
,
Ma
W.
,
Mu
Y.-H.
,
Wang
F.
,
Fan
S.-Z.
, and
Wu
Y.-H.
, “
Effects of Freeze-Thaw Cycle on Engineering Properties of Loess Used as Road Fills in Seasonally Frozen Ground Regions, North China
,”
Journal of Mountain Science
14
, no. 
2
(February
2017
):
356
368
, https://doi.org/10.1007/s11629-016-4005-4
28.
Bo
J. Q.
and
Wang
T. L.
, “
Influences of Freeze-Thaw and Fines Content on Mechanical Properties of Coarse-Grained Soil
” (in Chinese),
Chinese Journal of Geotechnical Engineering
37
, no. 
4
(April
2015
):
608
614
, https://doi.org/10.11779/CJGE201504005
29.
Qu
Y.-L.
,
Chen
G.-L.
,
Niu
F.-J.
,
Ni
W.-K.
,
Mu
Y.-H.
, and
Luo
J.
, “
Effect of Freeze-Thaw Cycles on Uniaxial Mechanical Properties of Cohesive Coarse-Grained Soils
,”
Journal of Mountain Science
16
, no. 
9
(September
2019
):
2159
2170
, https://doi.org/10.1007/s11629-019-5426-7
30.
Chen
S. F.
,
Kong
L. W.
, and
Li
J. J.
, “
In-Situ Dynamic Shear Modulus and Decay Characteristics of Silty Clay under Cyclic Freezing-Thawing
” (in Chinese),
Journal of Vibration and Shock
38
, no. 
4
(April
2019
): 6, https://doi.org/10.13465/j.cnki.jvs.2019.04.011
31.
Cao
J.
and
Chung
D. D. L.
, “
Damage Evolution during Freeze–Thaw Cycling of Cement Mortar, Studied by Electrical Resistivity Measurement
,”
Cement and Concrete Research
32
, no. 
10
(October
2002
):
1657
1661
, https://doi.org/10.1016/S0008-8846(02)00856-6
32.
Qu
Y.-L.
,
Ni
W.-K.
,
Niu
F.-J.
,
Mu
Y.-H.
,
Chen
G.-L.
, and
Luo
J.
, “
Mechanical and Electrical Properties of Coarse-Grained Soil Affected by Cyclic Freeze-Thaw in High Cold Regions
,”
Journal of Central South University
27
, no. 
3
(March
2020
):
853
866
, https://doi.org/10.1007/s11771-020-4336-8
33.
Yuan
G.
,
Che
A.
, and
Tang
H.
, “
Evaluation of Soil Damage Degree under Freeze–Thaw Cycles through Electrical Measurements
,”
Engineering Geology
293
(
2021
): 106297, https://doi.org/10.1016/j.enggeo.2021.106297
34.
Mair
R. J.
, “
Developments in Geotechnical Engineering Research: Applications to Tunnels and Deep Excavations: Inst Civ Engrs Proc Civ Engng V97, N1 (Feb 1993), P27–41
,”
International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts
30
, no. 
4
(August
1993
): A262, https://doi.org/10.1016/0148-9062(93)92167-O
35.
Yang
D. X.
,
Wang
J. C.
, and
Yang
D.
, “
Research Advance on Characteristics of Glacial Tills in Parlung River along Sichuan-Tibet Highway
” (in Chinese),
Exploration Engineering (Rock & Soil Drilling and Tunneling)
45
, no. 
8
(August
2018
):
51
57
.
36.
Standard for Geotechnical Experimental Methods
, GB/T 50123–2019 (Beijing, China:
The Standardization Administration of the People’s Republic of China
,
2019
).
37.
Medley
E. W.
, “
The Engineering Characterization of Melanges and Similar Block-in-Matrix Rocks (Bimrocks)
” (PhD diss.,
University of California
, Berkeley,
1994
).
38.
Code for Rock Test of Railway Engineering
, TB10115-2014 (Beijing, China:
National Railway Administration of the People’s Republic of China
,
2014
).
39.
Hu
F.
,
Li
Z. Q.
,
Tian
Y. F.
,
Hu
R. L.
, “
Failure Patterns and Morphological Soil-Rock Interface Characteristics of Frozen Soil-Rock Mixtures under Compression and Tension
,”
Applied Sciences
11
, no. 
1
(January
2021
): 461, https://doi.org/10.3390/app11010461
40.
Cai
H. C.
,
Li
Y.
,
Yang
Y. P.
,
Tang
C. M.
,
Cheng
L. B.
, and
Liu
K.
, “
Variation of Temperature and Permafrost along Qinghai-Tibet Railway
” (in Chinese),
Chinese Journal of Rock Mechanics and Engineering
35
, no. 
7
(July
2016
):
1434
1444
, https://doi.org/10.13722/j.cnki.jrme.2015.0860
41.
Wang
L.
,
Zuo
X.
,
Zheng
F.
,
Wilson
G.
,
Zhang
X. J.
,
Wang
Y.
, and
Fu
H.
, “
The Effects of Freeze-Thaw Cycles at Different Initial Soil Water Contents on Soil Erodibility in Chinese Mollisol Region
,”
Catena
193
(
2020
): 104615, https://doi.org/10.1016/j.catena.2020.104615
42.
Lin
H.
,
Han
Y.
,
Liang
S.
,
Gong
F.
,
Han
S.
,
Shi
C.
, and
Feng
P.
, “
Effects of Low Temperatures and Cryogenic Freeze-Thaw Cycles on Concrete Mechanical Properties: A Literature Review
,”
Construction and Building Materials
345
(
2022
): 128287, https://doi.org/10.1016/j.conbuildmat.2022.128287
43.
Tang
L.
,
Li
G.
,
Luo
T.
,
Jin
L.
,
Yu
Y.
,
Sun
Q.
, and
Li
G.
, “
Mechanism of Shear Strength Deterioration of Soil-Rock Mixture after Freeze–Thaw Cycles
,”
Cold Regions Science and Technology
200
(
2022
): 103585, https://doi.org/10.1016/j.coldregions.2022.103585
44.
Zhang
Z.
,
Ma
W.
, and
Qi
J. L.
, “
Structure Evolution and Mechanism of Engineering Properties Change of Soils under Effect of Freeze-Thaw Cycle
” (in Chinese),
Journal of Jilin University (Earth Science Edition)
43
, no. 
6
(November
2013
):
1904
191
, https://doi.org/10.13278/j.cnki.jjuese.2013.06.017
45.
Luo
S.
,
Wang
J.
,
Pomeroy
J. W.
, and
Lyu
S.
, “
Freeze-Thaw Changes of Seasonally Frozen Ground on the Tibetan Plateau from 1960 to 2014
,”
Journal of Climate
33
, no. 
21
(November
2020
):
9427
9446
, https://doi.org/10.1175/JCLI-D-19-0923.1
46.
He
H.
,
Li
W.
, and
Senetakis
K.
, “
Small Strain Dynamic Behavior of Two Types of Carbonate Sands
,”
Soils and Foundations
59
, no. 
3
(June
2019
):
571
585
, https://doi.org/10.1016/j.sandf.2018.11.003
47.
Stokoe
K. H.
,
Darendeli
M. B.
,
Andrus
R. D.
, and
Brown
L. T.
, “
Dynamic Soil Properties: Laboratory, Field and Correlation Studies
,” in
Earthquake Geotechnical Engineering
(
Rotterdam, the Netherlands
:
A. A. Balkema
,
1999
),
811
845
.
48.
Tang
L.
,
Li
G.
,
Li
Z.
,
Jin
L.
, and
Yang
G.
, “
Shear Properties and Pore Structure Characteristics of Soil–Rock Mixture under Freeze–Thaw Cycles
,”
Bulletin of Engineering Geology and the Environment
80
, no. 
4
(April
2021
):
3233
3249
, https://doi.org/10.1007/s10064-021-02118-4
49.
Gong
J.
and
Zhang
W.
, “
The Effects of Pozzolanic Powder on Foam Concrete Pore Structure and Frost Resistance
,”
Construction and Building Materials
208
(
2019
):
135
143
, https://doi.org/10.1016/j.conbuildmat.2019.02.021
50.
Huang
Y.
,
Chen
Y.
,
Wang
S.
,
Wu
M.
, and
Wang
W.
, “
Effects of Freeze–Thaw Cycles on Volume Change Behavior and Mechanical Properties of Expansive Clay with Different Degrees of Compaction
,”
International Journal of Geomechanics
22
, no. 
5
(May
2022
): 04022050, https://doi.org/10.1061/(ASCE)GM.1943-5622.0002347
51.
Seed
H. B.
,
Wong
R. T.
,
Idriss
I. M.
, and
Tokimatsu
K.
, “
Moduli and Damping Factors for Dynamic Analyses of Cohesionless Soils
,”
Journal of Geotechnical Engineering
112
, no. 
11
(November
1986
):
1016
1032
, https://doi.org/10.1061/(ASCE)0733-9410(1986)112:11(1016)
52.
Yuan
X. M.
,
Sun
R.
,
Sun
J.
,
Meng
S. J.
, and
Shi
Z. J.
, “
Laboratory Experimental Study on Dynamic Shear Modulus Ratio and Damping Ratio of Soils
” (in Chinese),
Earthquake Engineering and Engineering Vibration
20
, no. 
4
(December
2000
):
133
139
, https://doi.org/10.13197/j.eeev.2000.04.020
53.
Yasuda
N.
and
Matsumoto
N.
, “
Dynamic Deformation Characteristics of Sands and Rockfill Materials
,”
Canadian Geotechnical Journal
30
, no. 
5
(October
1993
):
747
757
, https://doi.org/10.1139/t93-067
54.
Rollins
K. M.
,
Evans
M. D.
,
Diehl
N. B.
, and
Daily
W. D.
 III
, “
Shear Modulus and Damping Relationships for Gravels
,”
Journal of Geotechnical and Geoenvironmental Engineering
124
, no. 
5
(May
1998
):
396
405
, https://doi.org/10.1061/(ASCE)1090-0241(1998)124:5(396)
55.
Menq
F.-Y.
, “
Dynamic Properties of Sandy and Gravelly Soils
” (PhD diss.,
University of Texas at Austin
,
2003
).
56.
Jing
R.
,
Zhang
F.
,
Feng
D.
,
Liu
X.
, and
Scarpas
A.
, “
Dynamic Shear Modulus and Damping Ratio of Compacted Silty Clay Subjected to Freeze–Thaw Cycles
,”
Journal of Materials in Civil Engineering
31
, no. 
10
(October
2019
): 04019244, https://doi.org/10.1061/(ASCE)MT.1943-5533.0002893
This content is only available via PDF.
You do not currently have access to this content.