Abstract

We determined the effect of the core sample dimensions on the measured values of the Schmidt rebound hardness and proposed a way to correct it to obtain unaffected value. The effect was previously investigated on cubes, where a clear dependence of the rebound hardness on the cube edge was proved. For cylindrical bodies, however, the problem is more complex. In order to determine and verify our model, a set of cylindrical samples was made from greywacke. After applying the correction, an improvement in the mean rebound hardness of the whole set was achieved from 80 to 98.8 % of the unaffected mean rebound value.

References

1.
Sumner
P.
and
Nel
W.
, “
The Effect of Rock Moisture on Schmidt Hammer Rebound: Tests on Rock Samples from Marion Island and South Africa
,”
Earth Surface Processes and Landforms
27
, no. 
10
(September
2002
):
1137
1142
, https://doi.org/10.1002/esp.402
2.
Aydin
A.
, “
ISRM Suggested Method for Determination of the Schmidt Hammer Rebound Hardness: Revised Version
,”
International Journal of Rock Mechanics and Mining Sciences
46
, no. 
3
(April
2009
):
627
634
, https://doi.org/10.1016/j.ijrmms.2008.01.020
3.
Katz
O.
,
Reches
Z.
, and
Roegiers
J.-C.
, “
Evaluation of Mechanical Rock Properties Using a Schmidt Hammer
,”
International Journal of Rock Mechanics and Mining Sciences
37
, no. 
4
(June
2000
):
723
728
, https://doi.org/10.1016/S1365-1609(00)00004-6
4.
Černá
B.
and
Engel
Z.
, “
Surface and Sub-surface Schmidt Hammer Rebound Value Variation for a Granite Outcrop
,”
Earth Surface Processes and Landforms
36
, no. 
2
(February
2011
):
170
179
, https://doi.org/10.1002/esp.2029
5.
Brencich
A.
,
Cassini
G.
,
Pera
D.
, and
Riotto
G.
, “
Calibration and Reliability of the Rebound (Schmidt) Hammer Test
,”
Civil Engineering and Architecture
1
, no. 
3
(October
2013
):
66
78
, https://doi.org/10.13189/cea.2013.010303
6.
Nývlt
D.
,
Braucher
R.
,
Engel
Z.
,
Mlčoch
B.
, and ASTER Team “
Timing of the Northern Prince Gustav Ice Stream Retreat and the Deglaciation of Northern James Ross Island, Antarctic Peninsula during the Last Glacial–Interglacial Transition
,”
Quaternary Research
82
, no. 
2
(September
2014
):
441
449
, https://doi.org/10.1016/j.yqres.2014.05.003
7.
Matthews
J. A.
and
Winkler
S.
, “
Schmidt-Hammer Exposure-Age Dating: A Review of Principles and Practice
,”
Earth-Science Reviews
230
(July
2022
): 104038, https://doi.org/10.1016/j.earscirev.2022.104038
8.
Portier
E.
,
Mercier
D.
,
Decaulne
A.
, and
Cossart
E.
, “
Schmidt-Hammer Exposure-Age Dating of Seven Paraglacial Rock-Slope Failures in the Bolungarvík-Suðureyri Area (Westfjords, Iceland)
,”
Geomorphology
457
(July
2024
): 109230, https://doi.org/10.1016/j.geomorph.2024.109230
9.
Briševac
Z.
,
Kosović
K.
,
Navratil
D.
, and
Korman
T.
, “
Adapted Schmidt Hardness Testing on Large Rock Samples—Kanfanar-South Quarry Case Study
,”
Sustainability
15
, no. 
3
(February
2023
): 2058, https://doi.org/10.3390/su15032058
10.
Přikryl
R.
and
Snížek
P.
, “
Critical Assessment of the ‘Non-destructiveness’ of Schmidt Hammer Test on Monumental Sandstones: A Microscopic and Microstructural Approach
,”
Journal of Cultural Heritage
59
(January–February
2023
):
247
254
, https://doi.org/10.1016/j.culher.2022.12.011
11.
Kahraman
S.
,
Fener
M.
, and
Gunaydin
O.
, “
Predicting the Schmidt Hammer Values of In–Situ Intact Rock from Core Sample Values
,”
International Journal of Rock Mechanics and Mining Sciences
39
, no. 
3
(April
2002
):
395
399
, https://doi.org/10.1016/S1365-1609(02)00028-X
12.
Bolla
A.
and
Paronuzzi
P.
, “
UCS Field Estimation of Intact Rock Using the Schmidt Hammer: A New Empirical Approach
,”
IOP Conference Series: Earth and Environmental Science
833
, no. 
1
(August
2021
): 012014, https://doi.org/10.1088/1755-1315/833/1/012014
13.
Basu
A.
and
Aydin
A.
, “
A Method for Normalization of Schmidt Hammer Rebound Values
,”
International Journal of Rock Mechanics and Mining Sciences
41
, no. 
7
(October
2004
):
1211
1214
, https://doi.org/10.1016/j.ijrmms.2004.05.001
14.
Wang
H.
,
Lin
H.
, and
Cao
P.
, “
Correlation of UCS Rating with Schmidt Hammer Surface Hardness for Rock Mass Classification
,”
Rock Mechanics and Rock Engineering
50
, no. 
1
(January
2017
):
195
203
, https://doi.org/10.1007/s00603-016-1044-7
15.
Chellal
H. A. K.
,
Egenhoff
S.
,
Latrach
A.
, and
Bakelli
O.
, “
Machine Learning Based Predictive Models for UCS and Young’s Modulus of the Dakota Sand Using Schmidt Hammer Rebound
” (paper presentation,
57th U.S. Rock Mechanics/Geomechanics Symposium
, Atlanta, GA, June 25–28,
2023
).
16.
Demirdag
S.
,
Yavuz
H.
, and
Altindag
R.
, “
The Effect of Sample Size on Schmidt Rebound Hardness Value of Rocks
,”
International Journal of Rock Mechanics and Mining Sciences
46
, no. 
4
(June
2009
):
725
730
, https://doi.org/10.1016/j.ijrmms.2008.09.004
17.
Demirdag
S.
,
Sengun
N.
,
Ugur
I.
, and
Altindag
R.
, “
Estimating the Uniaxial Compressive Strength of Rocks with Schmidt Rebound Hardness by Considering the Sample Size
,”
Arabian Journal of Geosciences
11
, no. 
17
(September
2018
): 502, https://doi.org/10.1007/s12517-018-3847-1
18.
Czech Geological Survey “
Geological Map 1 : 50 000
” (in Czech), ČESKÁ GEOLOGICKÁ SLUŽBA,
2023
, https://web.archive.org/web/20231119124420/https://mapy.geology.cz/geocr50/
19.
Okrusch
M.
and
Frimmel
H. E.
, “
Sediments and Sedimentary Rocks
,” in
Mineralogy: An Introduction to Minerals, Rocks, and Mineral Deposits
, ed.
Okrusch
M.
and
Frimmel
H. E.
(
Berlin
:
Springer Berlin, Heidelberg
,
2020
),
417
452
, https://doi.org/10.1007/978-3-662-57316-7_25
20.
Havlíčková
D.
,
Závacký
M.
, and
Krmíček
L.
, “
Anisotropy of Mechanical Properties of Greywacke
,”
GeoScience Engineering
65
, no. 
1
(March
2019
):
46
52
, https://doi.org/10.35180/gse-2019-0005
21.
Závacký
M.
,
Majda
T.
,
Rozsypalová
I.
, and
Štefaňák
J.
, “
Moravian Greywacke—Evaluation of Fracture, Strength and Deformability Properties
,”
E3S Web of Conferences
133
(November
2019
): 02003, https://doi.org/10.1051/e3sconf/201913302003
This content is only available via PDF.
You do not currently have access to this content.