Abstract
We determined the effect of the core sample dimensions on the measured values of the Schmidt rebound hardness and proposed a way to correct it to obtain unaffected value. The effect was previously investigated on cubes, where a clear dependence of the rebound hardness on the cube edge was proved. For cylindrical bodies, however, the problem is more complex. In order to determine and verify our model, a set of cylindrical samples was made from greywacke. After applying the correction, an improvement in the mean rebound hardness of the whole set was achieved from 80 to 98.8 % of the unaffected mean rebound value.
Issue Section:
Technical Notes
References
1.
Sumner
P.
and Nel
W.
, “The Effect of Rock Moisture on Schmidt Hammer Rebound: Tests on Rock Samples from Marion Island and South Africa
,” Earth Surface Processes and Landforms
27
, no. 10
(September 2002
): 1137
–1142
, https://doi.org/10.1002/esp.4022.
Aydin
A.
, “ISRM Suggested Method for Determination of the Schmidt Hammer Rebound Hardness: Revised Version
,” International Journal of Rock Mechanics and Mining Sciences
46
, no. 3
(April 2009
): 627
–634
, https://doi.org/10.1016/j.ijrmms.2008.01.0203.
Katz
O.
, Reches
Z.
, and Roegiers
J.-C.
, “Evaluation of Mechanical Rock Properties Using a Schmidt Hammer
,” International Journal of Rock Mechanics and Mining Sciences
37
, no. 4
(June 2000
): 723
–728
, https://doi.org/10.1016/S1365-1609(00)00004-64.
Černá
B.
and Engel
Z.
, “Surface and Sub-surface Schmidt Hammer Rebound Value Variation for a Granite Outcrop
,” Earth Surface Processes and Landforms
36
, no. 2
(February 2011
): 170
–179
, https://doi.org/10.1002/esp.20295.
Brencich
A.
, Cassini
G.
, Pera
D.
, and Riotto
G.
, “Calibration and Reliability of the Rebound (Schmidt) Hammer Test
,” Civil Engineering and Architecture
1
, no. 3
(October 2013
): 66
–78
, https://doi.org/10.13189/cea.2013.0103036.
Nývlt
D.
, Braucher
R.
, Engel
Z.
, Mlčoch
B.
, and ASTER Team “Timing of the Northern Prince Gustav Ice Stream Retreat and the Deglaciation of Northern James Ross Island, Antarctic Peninsula during the Last Glacial–Interglacial Transition
,” Quaternary Research
82
, no. 2
(September 2014
): 441
–449
, https://doi.org/10.1016/j.yqres.2014.05.0037.
Matthews
J. A.
and Winkler
S.
, “Schmidt-Hammer Exposure-Age Dating: A Review of Principles and Practice
,” Earth-Science Reviews
230
(July 2022
): 104038, https://doi.org/10.1016/j.earscirev.2022.1040388.
Portier
E.
, Mercier
D.
, Decaulne
A.
, and Cossart
E.
, “Schmidt-Hammer Exposure-Age Dating of Seven Paraglacial Rock-Slope Failures in the Bolungarvík-Suðureyri Area (Westfjords, Iceland)
,” Geomorphology
457
(July 2024
): 109230, https://doi.org/10.1016/j.geomorph.2024.1092309.
Briševac
Z.
, Kosović
K.
, Navratil
D.
, and Korman
T.
, “Adapted Schmidt Hardness Testing on Large Rock Samples—Kanfanar-South Quarry Case Study
,” Sustainability
15
, no. 3
(February 2023
): 2058, https://doi.org/10.3390/su1503205810.
Přikryl
R.
and Snížek
P.
, “Critical Assessment of the ‘Non-destructiveness’ of Schmidt Hammer Test on Monumental Sandstones: A Microscopic and Microstructural Approach
,” Journal of Cultural Heritage
59
(January–February 2023
): 247
–254
, https://doi.org/10.1016/j.culher.2022.12.01111.
Kahraman
S.
, Fener
M.
, and Gunaydin
O.
, “Predicting the Schmidt Hammer Values of In–Situ Intact Rock from Core Sample Values
,” International Journal of Rock Mechanics and Mining Sciences
39
, no. 3
(April 2002
): 395
–399
, https://doi.org/10.1016/S1365-1609(02)00028-X12.
Bolla
A.
and Paronuzzi
P.
, “UCS Field Estimation of Intact Rock Using the Schmidt Hammer: A New Empirical Approach
,” IOP Conference Series: Earth and Environmental Science
833
, no. 1
(August 2021
): 012014, https://doi.org/10.1088/1755-1315/833/1/01201413.
Basu
A.
and Aydin
A.
, “A Method for Normalization of Schmidt Hammer Rebound Values
,” International Journal of Rock Mechanics and Mining Sciences
41
, no. 7
(October 2004
): 1211
–1214
, https://doi.org/10.1016/j.ijrmms.2004.05.00114.
Wang
H.
, Lin
H.
, and Cao
P.
, “Correlation of UCS Rating with Schmidt Hammer Surface Hardness for Rock Mass Classification
,” Rock Mechanics and Rock Engineering
50
, no. 1
(January 2017
): 195
–203
, https://doi.org/10.1007/s00603-016-1044-715.
Chellal
H. A. K.
, Egenhoff
S.
, Latrach
A.
, and Bakelli
O.
, “Machine Learning Based Predictive Models for UCS and Young’s Modulus of the Dakota Sand Using Schmidt Hammer Rebound
” (paper presentation, 57th U.S. Rock Mechanics/Geomechanics Symposium
, Atlanta, GA, June 25–28, 2023
).16.
Demirdag
S.
, Yavuz
H.
, and Altindag
R.
, “The Effect of Sample Size on Schmidt Rebound Hardness Value of Rocks
,” International Journal of Rock Mechanics and Mining Sciences
46
, no. 4
(June 2009
): 725
–730
, https://doi.org/10.1016/j.ijrmms.2008.09.00417.
Demirdag
S.
, Sengun
N.
, Ugur
I.
, and Altindag
R.
, “Estimating the Uniaxial Compressive Strength of Rocks with Schmidt Rebound Hardness by Considering the Sample Size
,” Arabian Journal of Geosciences
11
, no. 17
(September 2018
): 502, https://doi.org/10.1007/s12517-018-3847-118.
Czech Geological Survey “
Geological Map 1 : 50 000
” (in Czech), ČESKÁ GEOLOGICKÁ SLUŽBA, 2023
, https://web.archive.org/web/20231119124420/https://mapy.geology.cz/geocr50/19.
Okrusch
M.
and Frimmel
H. E.
, “Sediments and Sedimentary Rocks
,” in Mineralogy: An Introduction to Minerals, Rocks, and Mineral Deposits
, ed. Okrusch
M.
and Frimmel
H. E.
(Berlin
: Springer Berlin, Heidelberg
, 2020
), 417
–452
, https://doi.org/10.1007/978-3-662-57316-7_2520.
Havlíčková
D.
, Závacký
M.
, and Krmíček
L.
, “Anisotropy of Mechanical Properties of Greywacke
,” GeoScience Engineering
65
, no. 1
(March 2019
): 46
–52
, https://doi.org/10.35180/gse-2019-000521.
Závacký
M.
, Majda
T.
, Rozsypalová
I.
, and Štefaňák
J.
, “Moravian Greywacke—Evaluation of Fracture, Strength and Deformability Properties
,” E3S Web of Conferences
133
(November 2019
): 02003, https://doi.org/10.1051/e3sconf/201913302003
This content is only available via PDF.
All rights reserved. This material may not be reproduced or copied, in whole or part, in any printed, mechanical, electronic, film, or other distribution and storage media, without the written consent of ASTM International.
You do not currently have access to this content.