Abstract

This study evaluated whether use of a high-vinyl styrene-butadiene-styrene (SBS) copolymer can provide adequate phase stability to highly modified asphalt (HiMA). An asphalt binder was modified with 7.5 % high-vinyl SBS to produce HiMA. A conventional polymer-modified asphalt was produced with 4 % SBS without vinyl and, together with the base asphalt, considered as reference samples. In the first phase, samples were analyzed considering unaged and short-term aged conditions. The experimental procedure analyzed binder morphology using fluorescence microscopy and determined chemical functional groups through Fourier transform infrared spectroscopy (FTIR). Rheological behavior at intermediate temperatures was evaluated concerning dynamic shear modulus, phase angle, and linear amplitude sweep (LAS) tests at 20°C. High-temperature properties, including apparent viscosity, performance grade, aging index, and multiple stress creep and recovery (MSCR) test, were also assessed. In the second phase, unaged asphalt binders were subjected to storage stability test, and the top and bottom sections were evaluated through fluorescence microscopy, FTIR, LAS, and MSCR tests. The samples with 7.5 % high vinyl SBS exhibited enhanced fatigue tolerance in the LAS test compared to base asphalt (14.35 times higher at 15 % shear strain) and samples with 4 % SBS without vinyl (6.62 times higher at 15 % shear strain). Additionally, it displayed superior resistance to deformation accumulation at high temperatures (ε10 parameter from MSCR) compared to base asphalt (99.65 % smaller at 64°C) and samples with 4 % SBS without vinyl (93.05 % smaller at 64°C). However, the storage stability of the asphalt samples with 7.5 % high vinyl SBS was compromised due to phase separation, severely impacting the rheological performance at intermediate and high temperatures. It was concluded that the incorporation of high levels positively impacts mechanical/rheological performance, but the molecular characteristics of the high vinyl SBS are not capable of providing adequate storage stability at a content of 7.5 %.

References

1.
Hunter
R. N.
,
Self
A.
, and
Read
J.
,
The Shell Bitumen Handbook
, 6th ed. (
London
:
ICE Publishing
,
2015
).
2.
Polacco
G.
,
Filippi
S.
,
Merusi
F.
, and
Stastna
G.
, “
A Review of the Fundamentals of Polymer-Modified Asphalts: Asphalt/Polymer Interactions and Principles of Compatibility
,”
Advances in Colloid and Interface Science
224
(
2015
):
72
112
, https://doi.org/10.1016/j.cis.2015.07.010
3.
Behnood
A.
and
Modiri Gharehveran
M.
, “
Morphology, Rheology, and Physical Properties of Polymer-Modified Asphalt Binders
,”
European Polymer Journal
112
(
2019
):
766
791
, https://doi.org/10.1016/j.eurpolymj.2018.10.049
4.
Wang
S.
,
Wang
Q.
,
Wu
X.
, and
Zhang
Y.
, “
Asphalt Modified by Thermoplastic Elastomer Based on Recycled Rubber
,”
Construction and Building Materials
93
(
2015
):
678
684
, https://doi.org/10.1016/j.conbuildmat.2015.06.047
5.
Yildirim
Y.
, “
Polymer Modified Asphalt Binders
,”
Construction and Building Materials
21
, no. 
1
(January
2007
):
66
72
, https://doi.org/10.1016/j.conbuildmat.2005.07.007
6.
Xiao
Y.
,
Chang
X.
,
Yan
B.
,
Zhang
X.
,
Yunusa
M.
,
Yu
R.
, and
Chen
Z.
, “
SBS Morphology Characteristics in Asphalt Binder and Their Relation with Viscoelastic Properties
,”
Construction and Building Materials
301
(
2021
): 124292, https://doi.org/10.1016/j.conbuildmat.2021.124292
7.
Sengoz
B.
,
Topal
A.
, and
Isikyakar
G.
, “
Morphology and Image Analysis of Polymer Modified Bitumens
,”
Construction and Building Materials
23
, no. 
5
(May
2009
):
1986
1992
, https://doi.org/10.1016/j.conbuildmat.2008.08.020
8.
Zhu
J.
,
Birgisson
B.
, and
Kringos
N.
, “
Polymer Modification of Bitumen: Advances and Challenges
,”
European Polymer Journal
54
(
2014
):
18
38
, https://doi.org/10.1016/j.eurpolymj.2014.02.005
9.
Chen
M.
,
Geng
J.
,
Xia
C.
,
He
L.
, and
Liu
Z.
, “
A Review of Phase Structure of SBS Modified Asphalt: Affecting Factors, Analytical Methods, Phase Models and Improvements
,”
Construction and Building Materials
294
(
2021
): 123610, https://doi.org/10.1016/j.conbuildmat.2021.123610
10.
Yao
X.
,
Li
C.
, and
Xu
T.
, “
Multi-scale Studies on Interfacial System Compatibility between Asphalt and SBS Modifier Using Molecular Dynamics Simulations and Experimental Methods
,”
Construction and Building Materials
346
(
2022
): 128502, https://doi.org/10.1016/j.conbuildmat.2022.128502
11.
Airey
G. D.
, “
Rheological Properties of Styrene Butadiene Styrene Polymer Modified Road Bitumens
,”
Fuel
82
, no. 
14
(October
2003
):
1709
1719
, https://doi.org/10.1016/S0016-2361(03)00146-7
12.
Airey
G. D.
, “
Styrene Butadiene Styrene Polymer Modification of Road Bitumens
,”
Journal of Materials Science
39
, no. 
3
(February
2004
):
951
959
, https://doi.org/10.1023/B:JMSC.0000012927.00747.83
13.
Chen
J.-S.
,
Liao
M.-C.
, and
Lin
C.-H.
, “
Determination of Polymer Content in Modified Bitumen
,”
Materials and Structures
36
, no. 
263
(November
2003
):
594
598
, https://doi.org/10.1617/13870
14.
Chen
J.-S.
,
Liao
M.-C.
, and
Shiah
M.-S.
, “
Asphalt Modified by Styrene-Butadiene-Styrene Triblock Copolymer: Morphology and Model
,”
Journal of Materials in Civil Engineering
14
, no. 
3
(June
2002
):
224
229
, https://doi.org/10.1061/(ASCE)0899-1561(2002)14:3(224)
15.
Chen
J.-S.
,
Wang
T. J.
, and
Lee
C.-T.
, “
Evaluation of a Highly-Modified Asphalt Binder for Field Performance
,”
Construction and Building Materials
171
(
2018
):
539
545
, https://doi.org/10.1016/j.conbuildmat.2018.03.188
16.
Elwardany
M.
,
Habbouche
J.
,
Andriescu
A.
,
Mensching
D. J.
,
Hajj
E. Y.
, and
Piratheepan
M.
, “
Comprehensive Performance Evaluation of High Polymer-Modified Asphalt Binders beyond Linear Viscoelastic Rheological Surrogates
,”
Construction and Building Materials
351
(
2022
): 128902, https://doi.org/10.1016/j.conbuildmat.2022.128902
17.
Bańkowski
W.
,
Gajewski
M.
,
Horodecka
R.
,
Mirski
K.
,
Targowska-Lech
E.
, and
Jasiński
D.
, “
Assessment of the Effect of the Use of Highly-Modified Binder on the Viscoelastic and Functional Properties of Bituminous Mixtures Illustrated with the Example of Asphalt Concrete for the Binder Course
,”
Construction and Building Materials
296
(
2021
): 123412, https://doi.org/10.1016/j.conbuildmat.2021.123412
18.
Kumar
Y.
,
Singh
S. K.
,
Oberoi
D.
,
Kumar
P.
,
Mohanty
P.
, and
Ravindranath
S. S.
, “
Effect of Molecular Structure and Concentration of Styrene-Butadiene Polymer on Upper Service Temperature Rheological Properties of Modified Binders
,”
Construction and Building Materials
249
(
2020
): 118790, https://doi.org/10.1016/j.conbuildmat.2020.118790
19.
Lin
P.
,
Yan
C.
,
Huang
W.
,
Li
Y.
,
Zhou
L.
,
Tang
N.
,
Xiao
F.
,
Zhang
Y.
, and
Lv
Q.
, “
Rheological, Chemical and Aging Characteristics of High Content Polymer Modified Asphalt
,”
Construction and Building Materials
207
(
2019
):
616
629
, https://doi.org/10.1016/j.conbuildmat.2019.02.086
20.
Rivera
C.
,
Caro
S.
,
Arámbula-Mercado
E.
,
Sánchez
D. B.
, and
Karki
P.
, “
Comparative Evaluation of Ageing Effects on the Properties of Regular and Highly Polymer Modified Asphalt Binders
,”
Construction and Building Materials
302
(
2021
): 124163, https://doi.org/10.1016/j.conbuildmat.2021.124163
21.
Singh
S. K.
,
Kumar
Y.
, and
Ravindranath
S. S.
, “
Thermal Degradation of SBS in Bitumen during Storage: Influence of Temperature, SBS Concentration, Polymer Type and Base Bitumen
,”
Polymer Degradation and Stability
147
(
2018
):
64
75
, https://doi.org/10.1016/j.polymdegradstab.2017.11.008
22.
Liang
M.
,
Liang
P.
,
Fan
W.
,
Qian
C.
,
Xin
X.
,
Shi
J.
, and
Nan
G.
, “
Thermo-rheological Behavior and Compatibility of Modified Asphalt with Various Styrene–Butadiene Structures in SBS Copolymers
,”
Materials & Design
88
(
2015
):
177
185
, https://doi.org/10.1016/j.matdes.2015.09.002
23.
Dalhat
M. A.
and
Al-Adham
K.
, “
Review on Laboratory Preparation Processes of Polymer Modified Asphalt Binder
,”
Journal of Traffic and Transportation Engineering (English Edition)
10
, no. 
2
(April
2023
):
159
184
, https://doi.org/10.1016/j.jtte.2023.01.002
24.
Fetters
L. J.
,
Lohse
D. J.
,
Richter
D.
,
Witten
A.
, and
Zirkel
A.
, “
Connection between Polymer Molecular Weight, Density, Chain Dimensions, and Melt Viscoelastic Properties
,”
Macromolecules
27
, no. 
17
(August
1994
):
4639
4647
, https://doi.org/10.1021/ma00095a001
25.
Scholten
E. J.
,
Vonk
W.
, and
Korenstra
J.
, “
Towards Green Pavements with Novel Class of SBS Polymers for Enhanced Effectiveness in Bitumen and Pavement Performance
,”
International Journal of Pavement Research and Technology
3
, no. 
4
(
2010
):
216
222
.
26.
Lu
X.
and
Isacsson
U.
, “
Compatibility and Storage Stability of Styrene-Butadiene-Styrene Copolymer Modified Bitumens
,”
Materials and Structures
30
, no. 
10
(December
1997
):
618
626
, https://doi.org/10.1007/BF02486904
27.
Porto
M.
,
Caputo
P.
,
Loise
V.
,
Eskandarsefat
S.
,
Teltayev
B.
, and
Oliviero Rossi
C.
, “
Bitumen and Bitumen Modification: A Review on Latest Advances
,”
Applied Sciences
9
, no. 
4
(February
2019
): 742, https://doi.org/10.3390/app9040742
28.
Standard Method of Test for Effect of Heat and Air on a Moving Film of Asphalt Binder (Rolling Thin-Film Oven Test)
, AASHTO T 240-23 (Washington, DC:
American Association of State and Highway Transportation Officials
,
2023
).
29.
Lv
S.
,
Wang
P.
,
Fan
X.
,
Borges Cabrera
M.
,
Hu
L.
,
Peng
X.
,
Liu
C.
, and
Yuan
J.
, “
Normalized Comparative Study on Fatigue Characteristics of Different Pavement Materials
,”
Construction and Building Materials
271
(
2021
): 121907, https://doi.org/10.1016/j.conbuildmat.2020.121907
30.
Cheng
H.
,
Sun
L.
,
Wang
Y.
,
Liu
L.
, and
Chen
X.
, “
Fatigue Test Setups and Analysis Methods for Asphalt Mixture: A State-of-the-Art Review
,”
Journal of Road Engineering
2
, no. 
4
(December
2022
):
279
308
, https://doi.org/10.1016/j.jreng.2022.11.002
31.
Standard Method of Test for Estimating Damage Tolerance of Asphalt Binders Using the Linear Amplitude Sweep
, AASHTO TP 101-14 (Washington, DC:
American Association of State and Highway Transportation Officials
,
2018
).
32.
Standard Method of Test for Estimating Fatigue Resistance of Asphalt Binders Using the Linear Amplitude Sweep
, AASHTO T 391 (Washington, DC:
American Association of State and Highway Transportation Officials
,
2020
).
34.
Chen
H.
,
Zhang
Y.
, and
Bahia
H. U.
, “
Estimating Asphalt Binder Fatigue at Multiple Temperatures Using a Simplified Pseudo-strain Energy Analysis Approach in the LAS Test
,”
Construction and Building Materials
266
, Part
A
(January
2021
): 120911, https://doi.org/10.1016/j.conbuildmat.2020.120911
35.
Chen
H.
and
Bahia
H. U.
, “
Modelling Effects of Aging on Asphalt Binder Fatigue Using Complex Modulus and the LAS Test
,”
International Journal of Fatigue
146
(
2021
): 106150, https://doi.org/10.1016/j.ijfatigue.2021.106150
36.
Nascimento
L. A. H.
,
Rocha
S. M. N.
,
Nascimento
C. E. H.
,
Kim
Y. R.
,
Chacur
M.
, and
Martins
A. A. T.
, “
Uso da Mecânica do Dano Contínuo na Caracterização de Misturas Asfálticas Brasileiras
” (paper presentation, 21° Encontro de Asfalto do IBP, Rio de Janeiro, Brazil, May 12,
2014
).
37.
Pavimentação – Ligante Asfáltico – Avaliação da Resistência à Fadiga de Ligantes Asfálticos Usando Varredura de Amplitude Linear (LAS – Linear Amplitude Sweep) – Método de Ensaio
, DNIT 439/2022 (Brasilia, Brazil:
National Department of Transport Infrastructure
,
2022
).
38.
Martins
A. T.
,
Motta
L. M. G. D.
, and
Leite
L. F. M.
, “
Contribuição para a Validação do Ensaio de Resistência ao Dano por Fadiga para Ligantes Asfálticos
” (master’s thesis,
Universidade Federal do Rio de Janeiro
,
2014
).
39.
Underwood
B. S.
, “
Multiscale Constitutive Modeling of Asphalt Concrete
” (PhD diss.,
North Carolina State University
,
2011
).
40.
Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer
, ASTM D4402/D4402M (West Conshohocken, PA:
ASTM International
, approved February 17,
2023
), https://doi.org/10.1520/D4402_D4402M-23
41.
Standard Test Method for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer
(Superseded), ASTM D7175 (West Conshohocken, PA:
ASTM International
, approved July 1,
2015
), https://doi.org/10.1520/D7175-15
42.
Standard Test Method for Multiple Stress Creep and Recovery (MSCR) of Asphalt Binder Using a Dynamic Shear Rheometer
, ASTM D7405 (West Conshohocken, PA:
ASTM International
, approved March 1,
2020
), https://doi.org/10.1520/D7405-20
43.
Standard Specification for Performance-Graded Asphalt Binder Using Multiple Stress Creep Recovery (MSCR) Test
, AASHTO M 332 (Washington, DC:
American Association of State and Highway Transportation Officials
,
2023
).
44.
Standard Practice for Evaluating the Elastic Behavior of Asphalt Binders Using the Multiple Stress Creep Recovery (MSCR) Test
, AASHTO R 92 (Washington, DC:
American Association of State and Highway Transportation Officials
,
2018
).
45.
Standard Method of Test for Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder Using a Dynamic Shear Rheometer (DSR)
, AASHTO T 350 (Washington, DC:
American Association of State and Highway Transportation Officials
,
2019
).
46.
Standard Practice for Determining the Separation Tendency of Polymer from Polymer Modified Asphalt
, ASTM D7173 (West Conshohocken, PA:
ASTM International
, approved May 1,
2020
), https://doi.org/10.1520/D7173-20
47.
Kumar
A.
,
Choudhary
R.
, and
Kumar
A.
, “
Storage Stability of Waste Tire Pyrolytic Char–Modified Asphalt Binders: Rheological and Chemical Characterization
,”
Journal of Materials in Civil Engineering
34
, no. 
3
(March
2022
): 04021489, https://doi.org/10.1061/(ASCE)MT.1943-5533.0004129
48.
Han
Y.
,
Tian
J.
,
Ding
J.
,
Shu
L.
, and
Ni
F.
, “
Evaluating the Storage Stability of SBR-Modified Asphalt Binder Containing Polyphosphoric Acid (PPA)
,”
Case Studies in Construction Materials
17
(
2022
): e01214, https://doi.org/10.1016/j.cscm.2022.e01214
49.
Zheng
X.
,
Wang
J.
,
Wu
L.
,
Sun
G.
, and
Jiang
X.
, “
Roles of Aromatic Oil, Polyphosphoric Acid and Sulfur on the Storage Stability and Compatibility of High-Viscosity Particle Modified Asphalt
,”
Construction and Building Materials
361
(
2022
): 129643, https://doi.org/10.1016/j.conbuildmat.2022.129643
50.
Duarte
G. M.
and
Faxina
A. L.
, “
Asphalt Concrete Mixtures Modified with Polymeric Waste by the Wet and Dry Processes: A Literature Review
,”
Construction and Building Materials
312
(
2021
): 125408, https://doi.org/10.1016/j.conbuildmat.2021.125408
51.
Zhang
D.
,
Zheng
Y.
,
Yuan
G.
,
Zhang
Y.
,
Qian
G.
, and
Zhang
H.
, “
Research on the Field Aging Gradient Behavior of SBS-Modified Bitumen at Different Depths of Pavement by Rheological and Microscopic Characterization
,”
Fuel
329
(
2022
): 125192, https://doi.org/10.1016/j.fuel.2022.125192
52.
Yang
C.
,
Lu
Y.
,
Cao
L.
,
Liu
Z.
,
Zhang
T.
,
Yu
H.
,
Zhang
B.
, and
Dong
Z.
, “
Polymer Degradation Mechanism and Chemical Composition Relationship of Hot-Poured Asphaltic Crack Repair Material during Thermal Aging Exploiting Fluorescence Microscopy and Gel Permeation Chromatography
,”
Construction and Building Materials
302
(
2021
): 124412, https://doi.org/10.1016/j.conbuildmat.2021.124412
53.
Zhang
F.
and
Yu
J.
, “
The Research for High-Performance SBR Compound Modified Asphalt
,”
Construction and Building Materials
24
, no. 
3
(March
2010
):
410
418
, https://doi.org/10.1016/j.conbuildmat.2009.10.003
54.
Zhang
F.
,
Yu
J.
, and
Han
J.
, “
Effects of Thermal Oxidative Ageing on Dynamic Viscosity, TG/DTG, DTA and FTIR of SBS- and SBS/Sulfur-Modified Asphalts
,”
Construction and Building Materials
25
, no. 
1
(January
2011
):
129
137
, https://doi.org/10.1016/j.conbuildmat.2010.06.048
55.
Ouyang
C.
,
Wang
S.
,
Zhang
Y.
, and
Zhang
Y.
, “
Improving the Aging Resistance of Styrene–Butadiene–Styrene Tri-block Copolymer Modified Asphalt by Addition of Antioxidants
,”
Polymer Degradation and Stability
91
, no. 
4
(April
2006
):
795
804
, https://doi.org/10.1016/j.polymdegradstab.2005.06.009
56.
Lu
X.
and
Isacsson
U.
, “
Chemical and Rheological Evaluation of Ageing Properties of SBS Polymer Modified Bitumens
,”
Fuel
77
, nos. 
9–10
(July–August
1998
):
961
972
, https://doi.org/10.1016/S0016-2361(97)00283-4
57.
Yan
C.
,
Huang
W.
,
Ma
J.
,
Xu
J.
,
Lv
Q.
, and
Lin
P.
, “
Characterizing the SBS Polymer Degradation within High Content Polymer Modified Asphalt Using ATR-FTIR
,”
Construction and Building Materials
233
(
2020
): 117708, https://doi.org/10.1016/j.conbuildmat.2019.117708
58.
Broering
W. B.
,
de Melo
J. V. S.
, and
Manfro
A. L.
, “
Incorporation of Nanoalumina into a Polymeric Asphalt Matrix: Reinforcement of the Nanostructure, Improvement of Phase Stability, and Amplification of Rheological Parameters
,”
Construction and Building Materials
320
(
2022
): 126261, https://doi.org/10.1016/j.conbuildmat.2021.126261
59.
Luo
S.
,
Tian
J.
,
Liu
Z.
,
Lu
Q.
,
Zhong
K.
, and
Yang
X.
, “
Rapid Determination of Styrene-Butadiene-Styrene (SBS) Content in Modified Asphalt Based on Fourier Transform Infrared (FTIR) Spectrometer and Linear Regression Analysis
,”
Measurement
151
(
2020
): 107204, https://doi.org/10.1016/j.measurement.2019.107204
60.
Sanglar
C.
,
Nguyen Quoc
H.
, and
Grenier-Loustalot
M. F.
, “
Studies on Thermal Degradation of 1-4 and 1-2 Polybutadienes in Inert Atmosphere
,”
Polymer Degradation and Stability
95
, no. 
9
(September
2010
):
1870
1876
, https://doi.org/10.1016/j.polymdegradstab.2010.04.021
61.
Pournaghshband Isfahani
A.
,
Shahrooz
M.
,
Yamamoto
T.
,
Muchtar
A.
,
Ito
M. M.
,
Yamaguchi
D.
,
Takenaka
M.
,
Sivaniah
E.
, and
Ghalei
B.
, “
Influence of Microstructural Variations on Morphology and Separation Properties of Polybutadiene-Based Polyurethanes
,”
RSC Advances
11
, no. 
25
(April
2021
):
15449
15456
, https://doi.org/10.1039/D1RA00764E
62.
Li
Y.-J.
,
Nakamura
N.
,
Wang
Y.-F.
,
Kodama
M.
, and
Nakaya
T.
, “
Synthesis and Hemocompatibilities of New Segmented Polyurethanes and Poly(urethane urea)s with Poly(butadiene) and Phosphatidylcholine Analogues in the Main Chains and Long-Chain Alkyl Groups in the Side Chains
,”
Chemistry of Materials
9
, no. 
7
(July
1997
):
1570
1577
, https://doi.org/10.1021/cm960615o
63.
Galooyak
S. S.
,
Dabir
B.
,
Nazarbeygi
A. E.
, and
Moeini
A.
, “
Rheological Properties and Storage Stability of Bitumen/SBS/Montmorillonite Composites
,”
Construction and Building Materials
24
, no. 
3
(March
2010
):
300
307
, https://doi.org/10.1016/j.conbuildmat.2009.08.032
64.
Wen
G.
,
Zhang
Y.
,
Zhang
Y.
,
Sun
K.
, and
Fan
Y.
, “
Rheological Characterization of Storage-Stable SBS-Modified Asphalts
,”
Polymer Testing
21
, no. 
3
(
2002
):
295
302
, https://doi.org/10.1016/S0142-9418(01)00086-1
65.
Nciri
N.
,
Kim
N.
, and
Cho
N.
, “
New Insights into the Effects of Styrene-Butadiene-Styrene Polymer Modifier on the Structure, Properties, and Performance of Asphalt Binder: The Case of AP-5 Asphalt and Solvent Deasphalting Pitch
,”
Materials Chemistry and Physics
193
(
2017
):
477
495
, https://doi.org/10.1016/j.matchemphys.2017.03.014
66.
Willis
J. R.
,
Taylor
A.
,
Tran
N. H.
,
Kluttz
B.
, and
Timm
D. H.
, “
Laboratory Evaluation of High Polymer Plant-Produced Mixtures
,”
Road Materials and Pavement Design
13
, sup
1
(
2012
):
260
280
, https://doi.org/10.1080/14680629.2012.657077
67.
Yan
C.
,
Yuan
L.
,
Yu
X.
,
Ji
S.
, and
Zhou
Z.
, “
Characterizing the Fatigue Resistance of Multiple Modified Asphalts Using Time Sweep Test, LAS Test and Elastic Recovery Test
,”
Construction and Building Materials
322
(
2022
): 125806, https://doi.org/10.1016/j.conbuildmat.2021.125806
68.
Subhy
A.
, “
Advanced Analytical Techniques in Fatigue and Rutting Related Characterisations of Modified Bitumen: Literature Review
,”
Construction and Building Materials
156
(
2017
):
28
45
, https://doi.org/10.1016/j.conbuildmat.2017.08.147
69.
Asphalt Institute.
Asphalt Binder Testing. Superpave Series no. 2 (SP-2)
, 3rd ed. (
Lexington, KY
:
Asphalt Institute
,
2001
).
70.
Asphalt Institute.
Asphalt Binder Testing. Manual Series no. 25 (MS-25)
, 3rd ed. (
Lexington, KY
:
Asphalt Institute
,
2012
).
71.
Haddadi
S.
,
Ghorbel
E.
, and
Laradi
N.
, “
Effects of the Manufacturing Process on the Performances of the Bituminous Binders Modified with EVA
,”
Construction and Building Materials
22
, no. 
6
(June
2008
):
1212
1219
, https://doi.org/10.1016/j.conbuildmat.2007.01.028
72.
Manfro
A. L.
,
Staub de Melo
J. V.
,
Villena Del Carpio
J. A.
, and
Broering
W. B.
, “
Permanent Deformation Performance under Moisture Effect of an Asphalt Mixture Modified by Calcium Carbonate Nanoparticles
,”
Construction and Building Materials
342
, Part
B
(August
2022
): 128087, https://doi.org/10.1016/j.conbuildmat.2022.128087
73.
Arambula
E.
, “
Influence of Fundamental Material Properties and Air Voids Structure on Moisture Damage of Asphalt Mixes
” (PhD diss.,
Texas A&M University
,
2007
).
74.
Omar
H. A.
,
Yusoff
N. I. M.
,
Mubaraki
M.
, and
Ceylan
H.
, “
Effects of Moisture Damage on Asphalt Mixtures
,”
Journal of Traffic and Transportation Engineering (English Edition)
7
, no. 
5
(October
2020
):
600
628
, https://doi.org/10.1016/j.jtte.2020.07.001
75.
Xu
S.
,
Xiao
F.
,
Amirkhanian
S.
, and
Singh
D.
, “
Moisture Characteristics of Mixtures with Warm Mix Asphalt Technologies – A Review
,”
Construction and Building Materials
142
(
2017
):
148
161
, https://doi.org/10.1016/j.conbuildmat.2017.03.069
76.
Mirsepahi
M.
,
Tanzadeh
J.
, and
Ghanoon
S. A.
, “
Laboratory Evaluation of Dynamic Performance and Viscosity Improvement in Modified Bitumen by Combining Nanomaterials and Polymer
,”
Construction and Building Materials
233
(
2020
): 117183, https://doi.org/10.1016/j.conbuildmat.2019.117183
77.
Cuciniello
G.
,
Leandri
P.
,
Filippi
S.
,
Lo Presti
D.
,
Losa
M.
, and
Airey
G.
, “
Effect of Ageing on the Morphology and Creep and Recovery of Polymer-Modified Bitumens
,”
Materials and Structures
51
, no. 
5
(October
2018
): 136, https://doi.org/10.1617/s11527-018-1263-3
78.
Li
Y.
,
Hao
P.
,
Zhao
C.
,
Ling
J.
,
Wu
T.
,
Li
D.
,
Liu
J.
, and
Sun
B.
, “
Anti-rutting Performance Evaluation of Modified Asphalt Binders: A Review
,”
Journal of Traffic and Transportation Engineering (English Edition)
8
, no. 
3
(June
2021
):
339
355
, https://doi.org/10.1016/j.jtte.2021.02.002
79.
Binti Joohari
I.
and
Giustozzi
F.
, “
Oscillatory Shear Rheometry of Hybrid Polymer-Modified Bitumen Using Multiple Stress Creep and Recovery and Linear Amplitude Sweep Tests
,”
Construction and Building Materials
315
(
2022
): 125791, https://doi.org/10.1016/j.conbuildmat.2021.125791
80.
Zani
L.
,
Giustozzi
F.
, and
Harvey
J.
, “
Effect of Storage Stability on Chemical and Rheological Properties of Polymer-Modified Asphalt Binders for Road Pavement Construction
,”
Construction and Building Materials
145
(
2017
):
326
335
, https://doi.org/10.1016/j.conbuildmat.2017.04.014
81.
Tang
J.
,
Wang
H.
, and
Liang
M.
, “
Molecular Simulation and Experimental Analysis of Interaction and Compatibility between Asphalt Binder and Styrene-Butadiene-Styrene
,”
Construction and Building Materials
342
, Part
A
(August
2022
): 128028, https://doi.org/10.1016/j.conbuildmat.2022.128028
82.
Sunny
A. T.
and
Thomas
S.
, “
3 - Polymeric Materials: Elastomers, Plastics, Fibers, Composites, Nanocomposites and Blends
,” in
Advances in Polymer Processing
(
Cambridge, UK
:
Woodhead Publishing
,
2009
),
47
70
, https://doi.org/10.1533/9781845696429.1.47
83.
Sinha Ray
S.
and
Banerjee
R.
, “
5 - Fundamentals of Polymer Blend Technology
,” in
Sustainable Polylactide-Based Blends
(Amsterdam, the Netherlands: Elsevier,
2022
),
79
125
, https://doi.org/10.1016/B978-0-323-85868-7.00008-1
84.
Youtcheff
J.
,
Wijayatilleke
N.
, and
Shenoy
A.
,
Evaluation of the Laboratory Asphalt Stability Test
, Report FHWA-HRT-04-111 (McLean, VA:
Federal Highway Administration
,
2005
).
85.
Mousavinezhad
S. H.
,
Shafabakhsh
G. H.
, and
Jafari Ani
O.
, “
Nano-clay and Styrene-Butadiene-Styrene Modified Bitumen for Improvement of Rutting Performance in Asphalt Mixtures Containing Steel Slag Aggregates
,”
Construction and Building Materials
226
(
2019
):
793
801
, https://doi.org/10.1016/j.conbuildmat.2019.07.252
86.
Liu
J.
,
Hao
P.
,
Jiang
W.
, and
Sun
B.
, “
Rheological Properties of SBS Modified Asphalt Incorporated Polyvinylpyrrolidone Stabilized Graphene Nanoplatelets
,”
Construction and Building Materials
298
(
2021
): 123850, https://doi.org/10.1016/j.conbuildmat.2021.123850
87.
Polacco
G.
and
Filippi
S.
, “
Vulcanization Accelerators as Alternative to Elemental Sulfur to Produce Storage Stable SBS Modified Asphalts
,”
Construction and Building Materials
58
(
2014
):
94
100
, https://doi.org/10.1016/j.conbuildmat.2014.02.018
88.
Chen
J. S.
and
Huang
C. C.
, “
Fundamental Characterization of SBS-Modified Asphalt Mixed with Sulfur
,”
Journal of Applied Polymer Science
103
, no. 
5
(March
2007
):
2817
2825
, https://doi.org/10.1002/app.24621
89.
Standard Test Method for Specific Gravity and Density of Semi-solid Asphalt Binder (Pycnometer Method)
, ASTM D70/D70M (West Conshohocken, PA:
ASTM International
, approved January 1,
2021
), https://doi.org/10.1520/D0070_D0070M-21
90.
Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester
, ASTM D92 (West Conshohocken, PA:
ASTM International
, approved July 1,
2018
), https://doi.org/10.1520/D0092-18
91.
Standard Test Method for Effect of Heat and Air on a Moving Film of Asphalt (Rolling Thin-Film Oven Test)
, ASTM D2872 (West Conshohocken, PA:
ASTM International
, approved May 1,
2022
), https://doi.org/10.1520/D2872-22
92.
Standard Test Method for Penetration of Bituminous Materials
, ASTM D5/D5M (West Conshohocken, PA:
ASTM International
, approved May 1,
2020
), https://doi.org/10.1520/D0005_D0005M-20
93.
Standard Test Method for Softening Point of Bitumen (Ring and-Ball Apparatus)
, ASTM D36/36M (West Conshohocken, PA:
ASTM International
, approved May 1,
2020
), https://doi.org/10.1520/D0036_D0036M-14R20
94.
Standard Test Method for Solubility of Asphalt Materials in Trichloroethylene or Toluene
, ASTM D2042 (West Conshohocken, PA:
ASTM International
, approved January 1,
2022
), https://doi.org/10.1520/D2042-22
95.
Semi-solid Bituminous Products — Determination of Density and Relative Density (in Portuguese)
, NBR 6296 (Rio de Janeiro, Brazil:
ABNT
,
2012
).
96.
Bituminous Materials - Determination of the Elastic Recovery by Ductilometer of Elastomeric Polymer and Ground Tyre Rubber Modified Asphalt (in Portuguese)
, NBR 15086 (Rio de Janeiro, Brazil:
ABNT
,
2022
).
97.
Petroleum Products - Determination of the Flash and Fire Points by Cleveland Open Cup (in Portuguese)
, NBR 11341 (Rio de Janeiro, Brazil:
ABNT
,
2014
).
98.
Asphalt Materials - Determination of Effect of Heat and Air on a Moving Thin-Film (in Portuguese)
, NBR 15235 (Rio de Janeiro, Brazil:
ABNT
,
2009
).
99.
Bituminous Materials - Determination of Penetration (in Portuguese)
, NBR 6576 (Rio de Janeiro, Brazil:
ABNT
,
2007
).
100.
Asphaltic Binders - Determination of the Softening Point - Ring-and-Ball Method (in Portuguese)
, NBR 6560 (Rio de Janeiro, Brazil:
ABNT
,
2016
).
101.
Asphalt Binder - Determination of Solubility in Trichloroethylene (in Portuguese)
, NBR 14855 (Rio de Janeiro, Brazil:
ABNT
,
2015
).
102.
Rubber, Vulcanized or Thermoplastic - Determination of Tensile Stress-Strain Properties
, ISO 37:2017 (Geneva, Switzerland:
International Organization of Standardization
,
2017
).
103.
Plastics and Ebonite - Determination of Indentation Hardness by Means of a Durometer (Shore Hardness)
, ISO 868:2003 (Geneva, Switzerland:
International Standard Organization
,
2003
).
104.
Rubber, Vulcanized or Thermoplastic - Determination of Density
, ISO 2781:2018 (Geneva, Switzerland:
International Standards Organization
,
2018
).
105.
Standard Test Methods for Apparent Density, Bulk Factor, and Pourability of Plastic Materials
, ASTM D1895 (West Conshohocken, PA:
ASTM International
, approved September 1,
2017
), https://doi.org/10.1520/D1895-17
106.
Plastics — Determination of the Melt Mass-Flow Rate (MFR) and Melt Volume-Flow Rate (MVR) of Thermoplastics
, ISO 1133-1:2022 (Geneva, Switzerland:
International Standards Organization
,
2011
).
This content is only available via PDF.
You do not currently have access to this content.