Abstract

Crack tip constraint is a significant issue in engineering components’ design and repair decisions. The main reason is that fracture assessment procedures, such as BS 7910, rely on lower-bound fracture toughness test data from deeply cracked bend specimens. This can generate stress states under various loading conditions with an appropriate crack tip stress triaxiality for metallic structures. Many real components (e.g., oil and gas pipelines) have small in-plane (shallow cracks) and out-of-plane (thin-wall thickness) dimensions that can cause a reduction in crack tip constraint to a considerable amount, thereby increasing the fracture toughness. As such, the structural assessment of low-constraint structural components using fracture toughness data obtained from deeply notched specimens may be safe but overly conservative, resulting in unnecessary repair shutdowns and costs. Consequently, relating fracture toughness values determined from laboratory specimens to real structural components becomes an issue in structural integrity assessments based on the two-parameter fracture mechanics methodology. This study investigates the applicability of the constraint-based failure assessment diagram (FAD) approach for the evaluation of cracked pin-loaded single-edge notched tension and three-point single-edge notched bend specimens at low (−120°C) and room temperatures. The analyses reveal that the experimentally measured toughness values, J0, depend on the crack sizes for the considered specimen geometries (a/W = 0.1, 0.3, 0.5). The results show the benefits of using constraint-modified FAD approach for the assessment of shallow cracks. Therefore, the enhanced toughness associated with constraint reduction indicated an increased margin and allows realistic design and repair decision-making that can help prevent catastrophic failures.

References

1.
Dodds
R. H.
 Jr.
,
Anderson
T. L.
, and
Kirk
M. T.
, “
A Framework to Correlate a/W Ratio Effects on Elastic-Plastic Fracture Toughness (Jc)
,”
International Journal of Fracture
48
, no. 
1
(March
1991
):
1
22
, https://doi.org/10.1007/BF00012499
2.
Cicero
S.
,
Ainsworth
R. A.
, and
Gutiérrez-Solana
F.
, “
Engineering Approaches for the Assessment of Low Constraint Fracture Conditions: A Critical Review
,”
Engineering Fracture Mechanics
77
, no. 
8
(May
2010
):
1360
1374
, https://doi.org/10.1016/j.engfracmech.2010.02.026
3.
Kim
Y. K.
,
Oh
B. T.
, and
Kim
J. H.
, “
Effects of Crack Tip Constraint on the Fracture Toughness Assessment of 9% Ni Steel for Cryogenic Application in Liquefied Natural Gas Storage Tanks
,”
Materials
13
, no. 
22
(November
2020
): 5250, https://doi.org/10.3390/ma13225250
4.
Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures
, BS 7910:2019 (London:
British Standards Institution
,
2019
).
5.
British Energy Generation Limited: Assessment of the Integrity of Structures Containing Defects
, R6 Revision 4 (London: EDF Energy UK,
2009
).
6.
Fitness-for-Service
, API 579-1/ASME FFS-1 (New York:
The American Society of American Engineers
,
2021
).
7.
Zerbst
U.
,
Schödel
M.
,
Webster
S.
, and
Ainsworth
R. A.
,
Fitness-for-Service Fracture Assessment of Structures Containing Cracks: A Workbook Based on the European SINTAP/FITNET Procedure
, 1st ed. (
Amsterdam, the Netherlands
:
Elsevier
,
2007
).
8.
Cravero
S.
and
Ruggieri
C.
, “
Estimation Procedure of J-Resistance Curves for SE(T) Fracture Specimens Using Unloading Compliance
,”
Engineering Fracture Mechanics
74
, no. 
17
(November
2007
):
2735
2757
, https://doi.org/10.1016/j.engfracmech.2007.01.012
9.
Neimitz
A.
and
Galkiewicz
J.
, “
Fracture Toughness of Structural Components: Influence of Constraint
,”
International Journal of Pressure Vessels and Piping
83
, no. 
1
(January
2006
):
42
54
, https://doi.org/10.1016/j.ijpvp.2005.10.001
10.
Cravero
S.
and
Ruggieri
C.
, “
Structural Integrity Analysis of Axially Cracked Pipelines Using Conventional and Constraint-Modified Failure Assessment Diagrams
,”
International Journal of Pressure Vessels and Piping
83
, no. 
8
(August
2006
):
607
617
, https://doi.org/10.1016/j.ijpvp.2006.04.004
11.
Xu
J.
,
Zhang
Z. L.
,
Østby
E.
,
Nyhus
B.
, and
Sun
D. B.
, “
Constraint Effect on the Ductile Crack Growth Resistance of Circumferentially Cracked Pipes
,”
Engineering Fracture Mechanics
77
, no. 
4
(March
2010
):
671
684
, https://doi.org/10.1016/j.engfracmech.2009.11.005
12.
Xu
J.
,
Zhang
Z. L.
,
Østby
E.
,
Nyhus
B.
, and
Sun
D. B.
, “
Effects of Crack Depth and Specimen Size on Ductile Crack Growth of SENT and SENB Specimens for Fracture Mechanics Evaluation of Pipeline Steels
,”
International Journal of Pressure Vessels and Piping
86
, no. 
12
(Decenver
2009
):
787
797
, https://doi.org/10.1016/j.ijpvp.2009.12.004
13.
Nyhus
B.
,
Polanco
M. L.
, and
Ørjasæther
O.
, “
SENT Specimens an Alternative to SENB Specimens for Fracture Mechanics Testing of Pipelines
,” in
ASME 2003 22nd International Conference on Offshore Mechanics and Arctic Engineering
(
New York
:
American Society of Mechanical Engineers
,
2009
),
259
266
, https://doi.org/10.1115/OMAE2003-37370
14.
Xu
J.
,
Zhuo
X. M.
,
Li
P. P.
,
Fan
Y.
, and
Sun
Z.
, “
Constraint Effect on the Ductile Fracture Behavior of High-Strength Pipeline Steels
,”
Materials Science Forum
850
(
2016
):
899
904
, https://doi.org/10.4028/www.scientific.net/MSF.850.899
15.
Xu
J.
and
Fan
Y.
, “
Effects of Temperature and Crack Tip Constraint on Cleavage Fracture Toughness in the Weld Thermal Simulated X80 Pipeline Steels
,”
Advanced Materials Research
197–198
(
2011
):
1595
1598
, https://doi.org/10.4028/www.scientific.net/AMR.197-198.1595
16.
Method of Test for Determination of Fracture Toughness in Metallic Materials Using Single Edge Notched Tension (SENT) Specimens
, BS 8571:2018-TC (London:
British Standards Institution
,
2018
).
17.
Kang
J.
,
Gianetto
J. A.
, and
Tyson
W. R.
, “
Recent Development in Low-Constraint Fracture Toughness Testing for Structural Integrity Assessment of Pipelines
,”
Frontiers of Mechanical Engineering
13
, no. 
4
(December
2018
):
546
553
, https://doi.org/10.1007/s11465-018-0501-2
18.
Ruggieri
C.
, “
Low Constraint Fracture Toughness Testing Using SE(T) and SE(B) Specimens
,”
International Journal of Pressure Vessels and Piping
156
(September
2017
):
23
39
, https://doi.org/10.1016/j.ijpvp.2017.07.003
19.
Sarzosa
D. F. B.
and
Ruggieri
C.
, “
A Numerical Investigation of Constraint Effects in Circumferentially Cracked Pipes and Fracture Specimens Including Ductile Tearing
,”
International Journal of Pressure Vessels and Piping
120–121
(August–September
2014
):
1
18
, https://doi.org/10.1016/j.ijpvp.2014.03.005
20.
21.
Metallic Materials. Tensile Testing - Method of Test at Room Temperature
, BS EN ISO 6892-1:2019-TC (London:
British Standards Institute
,
2019
).
22.
Metallic Materials: Unified Method of Test for the Determination of Quasistatic Fracture Toughness
, ISO 12135:2021 (Genva, Switzerland:
International Organization for Standardization
,
2021
).
23.
Ainsworth
R. A.
, “
A Constraint-Based Failure Assessment Diagram for Fracture Assessment
,”
International Journal of Pressure Vessels and Piping
64
, no. 
3
(
1995
):
277
285
, https://doi.org/10.1016/0308-0161(95)98949-7
24.
Ainsworth
R. A.
and
O’Dowd
N. P.
, “
Constraint in the Failure Assessment Diagram Approach for Fracture Assessment
,”
Journal of Pressure Vessel Technology
117
, no. 
3
(August
1995
):
260
267
, https://doi.org/10.1115/1.2842121
25.
Hossain
M. M.
, “
Simplified Design and Integrity Assessment of Pressure Components and Structures
” (PhD diss.,
Memorial University
,
2009
).
26.
Sherry
A. H.
,
Hooton
D. G.
,
Beardsmore
D. W.
, and
Lidbury
D. P. G.
, “
Material Constraint Parameters for the Assessment of Shallow Defects in Structural Components. Part II: Constraint-Based Assessment of Shallow Defects
,”
Engineering Fracture Mechanics
72
, no. 
15
(October
2005
):
2396
2415
, https://doi.org/10.1016/j.engfracmech.2004.12.010
27.
Peng
W. Y.
,
Jin
H. J.
, and
Wu
S. J.
, “
Structural Integrity Analysis of Cracked Pressure Vessel Welds Using Conventional and Constraint-Modified Failure Assessment Diagrams
,”
Procedia Engineering
130
(
2015
):
835
844
, https://doi.org/10.1016/j.proeng.2015.12.204
28.
Ainsworth
R. A.
, “
Failure Assessment Diagrams for Use in R6 Assessments for Austenitic Components
,”
International Journal of Pressure Vessels and Piping
65
, no. 
3
(
1996
):
303
309
, https://doi.org/10.1016/0308-0161(94)00141-5
29.
Bouledroua
O.
,
Hadj Meliani
M.
, and
Pluvinage
G.
, “
Assessment of Pipe Defects Using a Constraint-Modified Failure Assessment Diagram
,”
Journal of Failure Analysis and Prevention
17
, no. 
1
(February
2017
):
144
153
, https://doi.org/10.1007/s11668-016-0221-z
30.
Hadley
I.
and
Horn
A.
, “
Treatment of Constraint in BS 7910:2013, ISO 27306 and DNVGL-RP-F108
,”
International Journal of Pressure Vessels and Piping
169
(January
2019
):
77
93
, https://doi.org/10.1016/j.ijpvp.2018.11.015
31.
Rodriguez
C.
,
Belzunce
F. J.
,
Garcia
T. E.
, and
Peñuelas
I.
, “
Constraint Dependence of the Fracture Toughness of Reduced Activation Ferritic-Martensitic Eurofer Steel Plates
,”
Engineering Fracture Mechanics
103
(May
2013
):
60
68
, https://doi.org/10.1016/j.engfracmech.2012.05.003
32.
Moon
D. H.
,
Park
J. Y.
, and
Kim
M. H.
, “
Effects of the Crack Tip Constraint on the Fracture Assessment of an AI 5083-O Weldment for Low Temperature Applications
,”
Materials
10
, no. 
7
(July
2017
): 815, https://doi.org/10.3390/ma10070815
33.
Hadley
I.
and
Karger
S. A.
,
Effect of Crack Tip Constraint on Fracture Toughness of A533B Steel and Validation of the Sintap Constraint, TWI Report Number: SINTAP/TWI/012
(
London
:
The Welding Institute
,
1999
).
34.
MacLennan
I.
and
Hancock
J. W.
, “
Constraint-Based Failure Assessment Diagrams
,”
International Journal of Pressure Vessels and Piping
64
, no. 
3
(
1995
):
287
298
, https://doi.org/10.1016/0308-0161(95)98950-B
35.
Beremin
F. M.
,
Pineau
A.
,
Mudry
F.
,
Devaux
J. C.
,
D’Escatha
Y.
, and
Ledermann
P.
, “
A Local Criterion for Cleavage Fracture of a Nuclear Pressure Vessel Steel
,”
Metallurgical Transactions A
14
, no. 
11
(November
1983
):
2277
2287
, https://doi.org/10.1007/BF02663302
36.
Gao
X.
,
Ruggieri
C.
, and
Dodds
R. H.
 Jr.
, “
Calibration of Weibull Stress Parameters Using Fracture Toughness Data
,”
International Journal of Fracture
92
, no. 
2
(July
1998
):
175
200
, https://doi.org/10.1023/A:1007521530191
37.
Sherry
A. H.
,
Wilkes
M. A.
,
Beardsmore
D. W.
, and
Lidbury
D. P. G.
, “
Material Constraint Parameters for the Assessment of Shallow Defects in Structural Components – Part I: Parameter Solutions
,”
Engineering Fracture Mechanics
72
, no. 
15
(October
2005
):
2373
2395
, https://doi.org/10.1016/j.engfracmech.2004.12.009
This content is only available via PDF.
You do not currently have access to this content.