Abstract

In order to study the macro and micro-mechanical properties of a soil sample under high pressure, we improved the traditional triaxial apparatus with high-bearing pressure for soil by combining it with the computed tomography (CT) system. The new apparatus overcomes the existing limits of low bearing pressure in the traditional triaxial apparatus and the small sample size in the micro-CT triaxial apparatus, keeping all the functions of the traditional triaxial apparatus. It can attain dynamic, quantitative, and noninvasive scanning of the internal structure of soil samples during the testing process. Moreover, the pressure chamber is made of high-strength and lightweight aircraft aluminum materials, allowing high X-ray penetration while ensuring that the scanned image is clear under high pressure. Consolidated undrained and drained triaxial tests are conducted by the apparatus on coral sand. The results show that the stress–strain curve is reasonable, the CT image is clear, and the particle breakage in the real-time loading process can be analyzed through image processing in single grading. As a result, the apparatus can be used to study the micro-mechanism of the internal structure of soil aiming at explaining its macro-mechanical behavior.

References

1.
Drucker
D. C.
and
Prager
W.
, “
Soil Mechanics and Plastic Analysis or Limit Design
,”
Quarterly of Applied Mathematics
10
, no. 
2
(
1952
):
157
165
, https://doi.org/10.1090/qam/48291
2.
Wastiels
J.
, “
Strength Representation of Concrete and Other Materials in the Octahedral Stress Space
,”
Cement and Concrete Research
12
, no. 
5
(September
1982
):
625
631
, https://doi.org/10.1016/0008-8846(82)90024-2
3.
Konagai
K.
,
Tamura
C.
,
Rangelow
P.
, and
Matsushima
T.
, “
Laser-Aided Tomography: A Tool for Visualization of Changes in the Fabric of Granular Assemblage
,”
Doboku Gakkai Rombunshuu
9
, no. 
3
(October
1992
):
25
33
, https://doi.org/10.2208/jscej.1992.455_25
4.
Nakagawa
M.
,
Altobelli
S. A.
,
Caprihan
A.
,
Fukushima
E.
, and
Jeong
E.-K.
, “
Non-invasive Measurements of Granular Flows by Magnetic Resonance Imaging
,”
Experiments in Fluids
16
, no. 
1
(November
1993
):
54
60
, https://doi.org/10.1007/BF00188507
5.
Alshibli
K.
,
Macari
E. J.
, and
Sture
S.
, “
Digital Imaging Techniques for Assessment of Homogeneity of Granular Materials
,”
Transportation Research Record
1526
, no. 
1
(January
1996
):
121
128
, https://doi.org/10.1177/0361198196152600115
6.
Alshibli
K.
,
Batiste
S. N.
,
Swanson
R. A.
,
Sture
S.
,
Costes
N. C.
, and
Lankton
M. R.
, “
Quantifying Void Ratio Variation in Sand Using Computed Tomography
,” in
Geotechnical Measurements: Lab and Field
(
Reston, VA
:
American Society of Civil Engineers
,
2000
),
30
43
, https://doi.org/10.1061/40518(294)3
7.
Cheng
Z.
and
Wang
J. F.
, “
A Mini-triaxial Apparatus for Testing of Micro-scale Mechanical Behavior of Granular Soils
” (in Chinese),
Yantu Lixue
39
, no. 
3
(March
2018
):
1123
1129
, https://doi.org/10.16285/j.rsm.2016.0577
8.
Wu
Z. W.
,
Ma
W.
,
Pu
Y. B.
, and
Chang
X. X.
, “
Submicroscopic Analysis on Deformation Characteristics in Creep Process of Frozen Soil
,”
Yantu Gongcheng Xuebao
19
, no. 
3
(May
1997
):
1
6
.
9.
Sun
X. L.
,
Wang
R.
, and
Hu
M. J.
, “
A CT-Timely Experimental Study on Meso-scopic Structural Damage Development of Frozen Soil under Triaxial Shearing
” (in Chinese),
Rock and Soil Mechanics
26
, no. 
8
(August
2005
):
1298
1302
, 1311, https://doi.org/10.3969/j.issn.1000-7598.2005.08.022
10.
Ge
X. R.
,
Ren
J. X.
,
Pu
Y. B.
,
Ma
W.
, and
Zhu
Y. L.
, “
A Real-in-Time CT Triaxial Testing Study of Meso-damage Evolution Law of Coal
” (in Chinese),
Yanshi Lixue Yu Gongcheng Xuebao
18
, no. 
5
(October
1999
):
497
502
.
11.
Wu
Y. Q.
,
Ding
W. H.
,
Pu
Y. B.
, and
Liao
Q. R.
,
“CT Real Time Observation of Rock Density Damage Increment under Compression Condition” (in Chinese)
,
Progress in Natural Science
10
, no. 
9
(September
2000
):
830
835
, https://doi.org/10.3321/j.issn:1002-008X.2000.09.010
12.
Li
X. J.
and
Zhang
D. L.
, “
Monitoring Change of Structure of Road Foundation Soil in Uniaxial Compression Test with CT
” (in Chinese),
Yantu Gongcheng Xuebao
22
, no. 
2
(March
2000
):
205
209
, https://doi.org/10.3321/j.issn:1000-4548.2000.02.012
13.
Chen
Z. H.
,
Lu
Z. H.
, and
Pu
Y. B.
, “
The Matching of Computerized Tomograph with Triaxial Test Apparatus for Unsaturated Soils
” (in Chinese),
Yantu Gongcheng Xuebao
23
, no. 
4
(July
2001
):
387
392
, https://doi.org/10.3321/j.issn:1000-4548.2001.04.001
14.
Chen
Z. H.
,
Sun
S. G.
,
Fang
X. W.
,
Zhu
Y. Q.
, and
Xie
Y.
, “
Development and Application of Multi-function Triaxial Apparatus for Soil
” (in Chinese),
Journal of Logistical Engineering University
23
, no. 
4
(October
2007
):
1
5
, https://doi.org/10.3969/j.issn.1672-7843.2007.04.001
15.
Fang
X. W.
,
Chen
Z. H.
,
Shen
C. N.
,
Liu
H. J.
, and
Wang
H. W.
, “
Mesoscopic Structural Evolution Analysis of Yield Hardening Process of Unsaturated Original Q_2 Loess
” (in Chinese),
Yantu Gongcheng Xuebao
30
, no. 
7
(July
2008
):
1044
1050
, https://doi.org/10.3321/j.issn:1000-4548.2008.07.017
16.
Fang
X. W.
,
Shen
C. N.
,
Chen
Z. H.
,
Liu
H. J.
, and
Huang
X. F.
, “
Quantitative Study on the Evolution of Triaxial Shear Mesoscopic Structure in Loess in Situ Q_2
” (in Chinese),
Yantu Lixue
31
, no. 
1
(January
2010
):
27
31
, https://doi.org/10.16285/j.rsm.2010.01.025
17.
Fang
X. W.
,
Chen
Z. H.
,
Shen
C. N.
, and
Zhang
W.
, “
Meso-testing Research on Structure Damage Evolution of Natural Q2 Loess
” (in Chinese),
Shuili Xeubao
39
, no. 
8
(August
2008
):
940
946
, https://doi.org/10.13243/j.cnki.slxb.2008.08.005
18.
Fang
X. W.
,
Shen
C. N.
,
Chen
Z. H.
, and
Zhang
W.
, “
Triaxial Wetting Tests of Intact Q2 Loess by Computed Tomography
” (in Chinese),
Tumu Gongcheng Xuebao
44
, no. 
10
(October
2011
):
98
106
, https://doi.org/10.15951/j.tmgcxb.2011.10.001
19.
Pang
X. Q.
,
Hu
Z. Q.
,
Li
H. R.
, and
Jiao
L. J.
, “
Structure Damage Evolution and Mechanical Properties of Loess by CT-Triaxial Test
” (in Chinese),
Shuili Xeubao
47
, no. 
2
(February
2016
):
180
188
, https://doi.org/10.13243/j.cnki.slxb.20150297
20.
Li
Y.
,
Wu
P.
,
Liu
W.
,
Sun
X.
,
Cui
Z.
, and
Song
Y.
, “
A Microfocus X-ray Computed Tomography Based Gas Hydrate Triaxial Testing Apparatus
,”
The Review of Scientific Instruments
90
, no. 
5
(May
2019
): 055106, https://doi.org/10.1063/1.5095812
21.
Wu
P.
,
Li
Y.
,
Liu
W.
,
Sun
X.
,
Kong
X.
, and
Song
Y.
, “
Cementation Failure Behavior of Consolidated Gas Hydrate-Bearing Sand
,”
Journal of Geophysical Research: Solid Earth
125
, no. 
1
(January
2020
): e2019JB018623, https://doi.org/10.1029/2019JB018623
22.
Wu
P.
,
Li
Y.
,
Liu
W.
,
Liu
Y.
,
Wang
D.
, and
Song
Y.
, “
Microstructure Evolution of Hydrate-Bearing Sands during Thermal Dissociation and Ensued Impacts on the Mechanical and Seepage Characteristics
,”
Journal of Geophysical Research: Solid Earth
125
, no. 
5
(May
2020
): e2019JB019103, https://doi.org/10.1029/2019JB019103
23.
Wu
P.
,
Li
Y.
,
Wang
L.
,
Sun
X.
,
Wu
D.
,
He
Y.
,
Li
Q.
, and
Song
Y.
, “
Hydrate-Bearing Sediment of the South China Sea: Microstructure and Mechanical Characteristics
,”
Engineering Geology
307
(September
2022
): 106782, https://doi.org/10.1016/j.enggeo.2022.106782
24.
Desrues
J.
,
Chambon
R.
,
Mokni
M.
, and
Mazerolle
F.
, “
Void Ratio Evolution inside Shear Bands in Triaxial Sand Specimens Studied by Computed Tomography
,”
Géotechnique
46
, no. 
3
(September
1996
):
529
546
, https://doi.org/10.1680/geot.1996.46.3.529
25.
Alshibli
K. A.
,
Sture
S.
,
Costes
N. C.
,
Frank
M. L.
,
Lankton
M. R.
,
Batiste
S. N.
, and
Swanson
R. A.
, “
Assessment of Localized Deformations in Sand Using X-ray Computed Tomography
,”
Geotechnical Testing Journal
23
, no. 
3
(September
2000
):
274
299
, https://doi.org/10.1520/GTJ11051J
26.
Otani
J.
,
Mukunoki
T.
, and
Obara
Y.
, “
Characterization of Failure in Sand under Triaxial Compression Using an Industrial X-ray Scanner
,”
International Journal of Physical Modelling in Geotechnics
2
, no. 
1
(March
2002
):
15
22
, https://doi.org/10.1680/ijpmg.2002.020102
27.
Oda
M.
and
Kazama
H.
, “
Microstructure of Shear Bands and Its Relation to the Mechanisms of Dilatancy and Failure of Dense Granular Soils
,”
Géotechnique
48
, no. 
4
(August
1998
):
465
481
, https://doi.org/10.1680/geot.1998.48.4.465
28.
Oda
M.
,
Takemura
T.
, and
Takahashi
M.
, “
Microstructure in Shear Band Observed by Microfocus X-ray Computed Tomography
,”
Géotechnique
54
, no. 
8
(October
2004
):
539
542
, https://doi.org/10.1680/geot.2004.54.8.539
29.
Matsushima
T.
,
Katagiri
J.
,
Uesugi
K.
,
Nakano
T.
, and
Tsuchiyama
A.
, “
Micro X-ray CT at Spring-8 for Granular Mechanics
,” in
Soil Stress-Strain Behavior: Measurement, Modeling and Analysis
, ed.
Ling
H. I.
,
Castillo
L.
,
Leshchinsky
D.
, and
Koseki
J.
(
Dordrecht, the Netherlands
:
Springer
,
2007
),
225
234
, https://doi.org/10.1007/978-1-4020-6146-2_7
30.
Hall
S. A.
,
Bornert
M.
,
Desrues
J.
,
Pannier
Y.
,
Lenoir
N.
,
Viggiani
G.
, and
Bésuelle
P.
, “
Discrete and Continuum Analysis of Localised Deformation in Sand Using X-ray μCT and Volumetric Digital Image Correlation
,”
Géotechnique
60
, no. 
5
(May
2010
):
315
322
, https://doi.org/10.1680/geot.2010.60.5.315
31.
Andò
E.
,
Hall
S. A.
,
Viggiani
G.
,
Desrues
J.
, and
Bésuelle
P.
, “
Experimental Micromechanics: Grain-Scale Observation of Sand Deformation
,”
Géotechnique Letters
2
, no. 
3
(September
2012
):
107
112
, https://doi.org/10.1680/geolett.12.00027
32.
Andò
E.
,
Hall
S. A.
,
Viggiani
G.
,
Desrues
J.
, and
Bésuelle
P.
, “
Grain-Scale Experimental Investigation of Localised Deformation in Sand: A Discrete Particle Tracking Approach
,”
Acta Geotechnica
7
, no. 
1
(March
2012
):
1
13
, https://doi.org/10.1007/s11440-011-0151-6
33.
Andò
E.
,
Hall
S. A.
,
Viggiani
G.
, and
Desrues
J.
, “
Experimental Micro-mechanics of Granular Media Studied by X-ray Tomography: Recent Results and Challenges
,”
Géotechnique Letters
3
, no. 
3
(September
2013
):
142
146
, https://doi.org/10.1680/geolett.13.00036
34.
Hasan
A.
and
Alshibli
K.
, “
Three Dimensional Fabric Evolution of Sheared Sand
,”
Granular Matter
14
, no. 
4
(July
2012
):
469
482
, https://doi.org/10.1007/s10035-012-0353-0
35.
Higo
Y.
,
Oka
F.
,
Sato
T.
,
Matsushima
Y.
, and
Kimoto
S.
, “
Investigation of Localized Deformation in Partially Saturated Sand under Triaxial Compression Using Microfocus X-ray CT with Digital Image Correlation
,”
Soils and Foundations
53
, no. 
2
(April
2013
):
181
198
, https://doi.org/10.1016/j.sandf.2013.02.001
36.
Charalampidou
E.-M.
,
Hall
S. A.
,
Stanchits
S.
,
Lewis
H.
, and
Viggiani
G.
, “
Characterization of Shear and Compaction Bands in a Porous Sandstone Deformed under Triaxial Compression
,”
Tectonophysics
503
, nos. 
1–2
(April
2011
):
8
17
, https://doi.org/10.1016/j.tecto.2010.09.032
37.
Alikarami
R.
,
Andò
E.
,
Gkiousas-Kapnisis
M.
,
Torabi
A.
, and
Viggiani
G.
, “
Strain Localisation and Grain Breakage in Sand under Shearing at High Mean Stress: Insights from In Situ X-ray Tomography
,”
Acta Geotechnica
10
, no. 
1
(February
2015
):
15
30
, https://doi.org/10.1007/s11440-014-0364-6
38.
Cao
J. Q.
,
Zhang
W.
,
Xiao
R.
,
Liang
X. L.
,
Xu
L.
, and
Li
H. Z.
, “
Characteristics of 3D Pore Structure Evolution of Nanjing Silty Sand during the Triaxial Compression
” (in Chinese),
Diqiu Kexue Yu Huanjing Xuebao
40
, no. 
4
(July
2018
):
487
496
, https://doi.org/10.3969/j.issn.1672-6561.2018.04.010
39.
Jiang
M. J.
,
Li
G. S.
,
Cao
P.
, and
Wu
X. F.
, “
Development of Miniature Triaxial Apparatus for Testing of Macro- and Micro-mechanical Behaviors of Soils
,”
Yantu Gongcheng Xuebao
42
, no. 
S1
(
2020
):
6
10
. https://doi.org/10.11779/CJGE2020S1042
40.
Sun
Z. X.
, “
Engineering Properties of Coral Sands in Nansha Islands
,”
Tropical Oceans
19
, no. 
2
(April
2000
):
1
8
.
41.
Chen
H. D.
,
Wei
H. Z.
,
Meng
Q. S.
,
Wang
Z. B.
, and
Feng
Z.
, “
The Study on Stress-Strain-Strength Behavior of Calcareous Sand with Particle Breakage
” (in Chinese),
Journal of Engineering Geology
26
, no. 
6
(November/December
2018
):
1490
1498
, https://doi.org/10.13544/j.cnki.jeg.2017-519
42.
Standard for Soil Test Method
, GB/T50123(2019) (Beijing:
Ministry of Water Resources of the People’s Republic of China
, approved October 1,
2019
).
43.
Yu
F. W.
, “
Particle Breakage in Triaxial Shear of a Coral Sand
,”
Soils and Foundations
58
, no. 
4
(August
2018
):
866
880
, https://doi.org/10.1016/j.sandf.2018.04.001
44.
Wang
Z. N.
,
Wang
G.
,
Ye
Q. G.
, and
Zha
J. J.
, “
A Cyclic Bounding Surface Model for Carbonate Sand Incorporating Particle Breakage
,”
Chinese Journal of Geotechnical Engineering
43
, no. 
5
(March
2021
):
886
892
, https://doi.org/10.11779/CJGE202105012
45.
Wildenschild
D.
and
Sheppard
A. P.
, “
X-ray Imaging and Analysis Techniques for Quantifying Pore-Scale Structure and Processes in Subsurface Porous Medium Systems
,”
Advances in Water Resources
51
(January
2013
):
217
246
, https://doi.org/10.1016/j.advwatres.2012.07.018
46.
Fan
N.
,
Wang
J. R.
,
Deng
C. B.
,
Fan
Y. P.
,
Wang
T. T.
, and
Guo
X. Y.
, “
Quantitative Characterization of Coal Microstructure and Visualization Seepage of Macropores Using CT-Based 3D Reconstruction
,”
Journal of Natural Gas Science and Engineering
81
(September
2020
): 103384, https://doi.org/10.1016/j.jngse.2020.103384
47.
Karatza
Z.
,
Andò
E.
,
Papanicolopulos
S.-A.
,
Ooi
J. Y.
, and
Viggiani
G.
, “
Evolution of Deformation and Breakage in Sand Studied Using X-ray Tomography
,”
Géotechnique
68
, no. 
2
(February
2018
):
107
117
, https://doi.org/10.1680/jgeot.16.P.208
48.
Hardin
B. O.
, “
Crushing of Soil Particles
,”
Journal of Geotechnical Engineering
111
, no. 
10
(October
1985
):
1177
1192
, https://doi.org/10.1061/(ASCE)0733-9410(1985)111:10(1177)
This content is only available via PDF.
You do not currently have access to this content.