ABSTRACT

The primary objective of this paper is to investigate the thermoreversible aging mechanism of crumb rubber–modified asphalt binders (CRMAs). In order to achieve this goal, an extended bending beam rheometer (Ex-BBR) test and volumetric dilatometer test were conducted. Additionally, isothermal crystallization kinetics (Avrami theory) and thermal stress calculation using the Hopkins and Hamming algorithm were employed to process the test data. The low-temperature properties of the asphalt specimens were characterized through calculations of creep stiffness (S), creep rate (m-value), grade loss (GL), thermal stress, and Avrami index (n). The experimental results indicate that thermoreversible aging is present in all asphalt samples during the long-term isothermal hardening process. This aging is characterized by continuous macroscopic volume shrinkage, accumulation of thermal stress, a crystallization process, and a process akin to crystallization (i.e., crumb rubber adsorbed oil at low temperatures). It was observed that CRMAs exhibit more severe thermoreversible aging and faster physical hardening rates due to their unique properties at a constant low temperature when compared with base asphalts. However, it was also observed that CRMAs can reduce the thermal stress by reducing the volumetric shrinkage coefficients and S. It is important to note that the volumetric shrinkage coefficients are not constant, which are related to the base asphalts, crumb rubber, and conditioning time. Therefore, it is not appropriate to use a single empirical constant to calculate thermal stress. Instead, multiple coefficients may need to be incorporated to account for the variability in shrinkage behavior.

References

1.
D.
 
Anderson
,
L.
 
Lapalu
,
M. O.
 
Marasteanu
,
Y. M.
 
Le Hir
,
J.-P.
 
Planche
, and
D.
 
Martin
, “
Low-Temperature Thermal Cracking of Asphalt Binders as Ranked by Strength and Fracture Properties
,”
Transportation Research Record
1766
, no. 
1
(January
2001
):
1
6
,
2.
H.
 
Kim
and
W.
 
Buttlar
, “
Finite Element Cohesive Fracture Modeling of Airport Pavements at Low Temperatures
,”
Cold Regions Science and Technology
57
, nos. 
2–3
(July
2009
):
123
130
,
3.
Y.
 
Tan
,
L.
 
Zhang
, and
H.
 
Xu
, “
Evaluation of Low-Temperature Performance of Asphalt Paving Mixtures
,”
Cold Regions Science and Technology
70
(January
2012
):
107
112
,
4.
H.
 
Ding
,
Y.
 
Qiu
, and
A.
 
Rahman
, “
Low-Temperature Reversible Aging Properties of Selected Asphalt Binders Based on Thermal Analysis
,”
Journal of Materials in Civil Engineering
31
, no. 
3
(March
2019
):
04018402
,
5.
S.
 
Hesp
,
A.
 
Soleimani
,
S.
 
Subramani
,
T.
 
Phillips
,
D.
 
Smith
,
P.
 
Marks
, and
K. K.
 
Tam
, “
Asphalt Pavement Cracking: Analysis of Extraordinary Life Cycle Variability in Eastern and Northeastern Ontario
,”
The International Journal of Pavement Engineering
10
, no. 
3
(May
2009
):
209
227
,
6.
Q.
 
Li
,
Y.
 
Qiu
,
A.
 
Rahman
, and
H.
 
Ding
, “
Application of Steel Slag Powder to Enhance the Low-Temperature Fracture Properties of Asphalt Mastic and Its Corresponding Mechanism
,”
Journal of Cleaner Production
184
(May
2018
):
21
31
,
7.
J.
 
Ma
,
M.
 
Hu
,
T.
 
Lu
,
D.
 
Sun
, and
S. A. M.
 
Hesp
, “
Thermoreversible Aging in Biorejuvenated Asphalt Binder
,”
Journal of Cleaner Production
383
(January
2023
):
135404
, .
8.
H.
 
Ding
,
J.
 
Gyasi
,
S. A. M.
 
Hesp
,
P.
 
Marks
,
Y.
 
Nie
,
M.
 
Somuah
,
S.
 
Tabib
,
N.
 
Tetteh
, and
I.
 
Ubaid
, “
Performance Grading of Extracted and Recovered Asphalt Cements
,”
Construction and Building Materials
187
(October
2018
):
996
1003
,
9.
H.
 
Ding
,
Y.
 
Qiu
,
A.
 
Rahman
, and
W.
 
Wang
, “
Low-Temperature Reversible Aging Properties of Coal Liquefaction Residue Modified Asphalt
,”
Materials and Structures
51
, no. 
3
(June
2018
):
63
,
10.
S. A. M.
 
Hesp
,
S.
 
Iliuta
, and
J. W.
 
Shirokoff
, “
Reversible Aging in Asphalt Binders
,”
Energy & Fuels
21
, no. 
2
(January
2007
):
1112
1121
,
11.
M.
 
Berkowitz
,
M.
 
Filipovich
,
A.
 
Baldi Sevilla
,
S. A. M.
 
Hesp
,
J. P.
 
Aguiar-Moya
, and
L. G.
 
Loria Salazar
, “
Oxidative and Thermoreversible Aging Effects on Performance-Based Rheological Properties of Six Latin American Asphalt Binders
,”
Energy & Fuels
33
, no. 
4
(February
2019
):
2604
2613
,
12.
Y.
 
Qiu
,
H.
 
Ding
,
A.
 
Rahman
, and
H.
 
Luo
, “
Application of Dispersant to Slow Down Physical Hardening Process in Asphalt Binder
,”
Materials and Structures
52
, no. 
1
(February
2019
):
9
,
13.
D.
 
Steiner
,
B.
 
Hofko
, and
R.
 
Blab
, “
Introducing a Nitrogen Conditioning to Separate Oxidative from Non-oxidative Ageing Effects of Hot Mix Asphalt
,”
Road Materials and Pavement Design
21
, no. 
5
(December
2018
):
1293
1311
,
14.
H.
 
Bahia
and
D.
 
Anderson
, “
Glass Transition Behavior and Physical Hardening of Asphalt Binders (with Discussion)
,”
Journal of the Association of Asphalt Paving Technologists
62
(
1993
):
93
129
.
15.
D. A.
 
Anderson
and
M. O.
 
Marasteanu
, “
Physical Hardening of Asphalt Binders Relative to Their Glass Transition Temperatures
,”
Transportation Research Record
1661
, no. 
1
(January
1999
):
27
34
,
16.
H.
 
Ding
and
S.
 
Hesp
, “
Quantification of Crystalline Wax in Asphalt Binders using Variable-Temperature Fourier-Transform Infrared Spectroscopy
,”
Fuel
277
(October
2020
):
118220
,
17.
H.
 
Ding
and
S. A. M.
 
Hesp
, “
Variable-Temperature Fourier-Transform Infrared Spectroscopy Study of Wax Precipitation and Melting in Canadian and Venezuelan Asphalt Binders
,”
Construction and Building Materials
264
(December
2020
):
120212
,
18.
H.
 
Ding
,
H.
 
Liu
,
Y.
 
Qiu
, and
A.
 
Rahman
, “
Effects of Crystalline Wax and Asphaltene on Thermoreversible Aging of Asphalt Binder
,”
The International Journal of Pavement Engineering
16
, no. 
11
(June
2022
):
3997
4006
,
19.
S.
 
Liu
,
W.
 
Cao
,
J.
 
Fang
, and
S.
 
Shang
, “
Variance Analysis and Performance Evaluation of Different Crumb Rubber Modified (CRM) Asphalt
,”
Construction and Building Materials
23
, no. 
7
(July
2009
):
2701
2708
,
20.
W.
 
Hong
,
Q.
 
Li
,
Z.
 
Lv
,
G.
 
Guan
, and
G.
 
Xing
, “
Preparation and Properties of Anion Rubber-Modified Asphalt
,” in
2011 International Conference on Materials for Renewable Energy & Environment
(
Piscataway, NJ
:
Institute of Electrical and Electronics Engineers
,
2011
),
932
935
, https://doi.org/10.1109/ICMREE.2011.5930955
21.
H.
 
Ding
,
N.
 
Tetteh
, and
S. A. M.
 
Hesp
, “
Preliminary Experience with Improved Asphalt Cement Specifications in the City of Kingston, Ontario, Canada
,”
Construction and Building Materials
157
(December
2017
):
467
475
, .
22.
E. I.
 
Ahmed
,
S. A. M.
 
Hesp
,
S. K. P.
 
Samy
,
S. D.
 
Rubab
, and
G.
 
Warburton
, “
Effect of Warm Mix Additives and Dispersants on Asphalt Rheological, Aging, and Failure Properties
,”
Construction and Building Materials
37
(December
2012
):
493
498
,
23.
B.
 
Pechenyi
and
L.
 
Akhmetova
, “
Universal Volumetric Dilatometer (Exchange of Experience)
,”
Industrial Laboratory
43
, no. 
5
(
1977
):
665
667
.
24.
H. A.
 
Tabatabaee
,
R.
 
Velasquez
, and
H. U.
 
Bahia
, “
Predicting Low Temperature Physical Hardening in Asphalt Binders
,”
Construction and Building Materials
34
(September
2012
):
162
169
,
25.
I. L.
 
Hopkins
and
R. W.
 
Hamming
, “
On Creep and Relaxation
,”
Journal of Applied Physics
28
, no. 
8
(August
1957
):
906
909
,
26.
M.
 
Avrami
, “
Kinetics of Phase Change. I General Theory
,”
The Journal of Chemical Physics
7
, no. 
12
(December
1939
):
1103
1112
,
27.
M.
 
Avrami
, “
Transformation-Time Relations for Random Distribution of Nuclei Kinetics of Phase Change II
,”
The Journal of Chemical Physics
8
, no. 
2
(February
1940
):
212
224
,
28.
G. R.
 
Morrison
and
S. A. M.
 
Hesp
, “
A New Look at Rubber-Modified Asphalt Binders
,”
Journal of Materials Science
30
, no. 
10
(May
1995
):
2584
2590
,
29.
H.
 
Xu
,
A.
 
McIntyre
,
T.
 
Adhikari
,
S. A. M.
 
Hesp
,
P.
 
Marks
, and
S.
 
Tabib
, “
Quality and Durability of Warm Rubberized Asphalt Cement in Ontario, Canada
,”
Transportation Research Record
2370
, no. 
1
(January
2013
):
26
32
,
You do not currently have access to this content.