ABSTRACT

The particle shape of rockfill materials varies greatly, and their dynamic characteristics under cyclic loading are important parameters in dynamic response analysis and construction design. In this study, three types of artificial rockfills with different particle shapes (cylinder, cube, and prism) were prepared by the cement slurry casting method. Cyclic triaxial tests were conducted to investigate the effects of confining pressure, loading frequency, and consolidation stress ratio on the dynamic behavior and particle breakage characteristics of artificial rockfill (AR). It was found that the prepared AR can approximately simulate the shear modulus and damping ratio of natural rockfill. The shear modulus decreased with the increase of particle shape coefficient regularity. The maximum shear modulus and the particle shape coefficient regularity can be approximately fitted by a power function. Particle shape does not affect the relationship between the normalized shear modulus and normalized shear strain, whereas it has an impact on the damping ratio of AR. The larger the confining pressure and the larger the particle shape coefficient, the more significant the particle breakage is.

References

1.
Z. Y.
 
Yang
,
C.
 
Liu
, and
M. X.
 
Wu
, “
Leading-Edge Technologies in Hydropower Development in China
,”
Global Energy Interconnection
2
, no. 
3
(June
2019
):
244
253
,
2.
S. S.
 
Chen
,
Z. Z.
 
Fu
,
K. M.
 
Wei
, and
H. Q.
 
Han
, “
Seismic Responses of High Concrete Face Rockfill Dams: A Case Study
,”
Water Science and Engineering
9
, no. 
3
(July
2016
):
195
204
,
3.
C.
 
Zhou
,
D.
 
Zou
, and
X.
 
Yu
, “
Influence of Seismic Wave Type and Incident Direction on the Dynamic Response of Tall Concrete-Faced Rockfill Dams
,”
Earthquake Science
35
, no. 
5
(October
2022
):
343
354
,
4.
F.
 
Sefi
and
M. A.
 
Lav
, “
Evaluation of a New Grain Breakage Factor Based on the Single Grain Crushing Strength
,”
Transportation Geotechnics
33
(March
2022
):
100733
,
5.
A.
 
Varadarajan
,
K. G.
 
Sharma
,
K.
 
Venkatachalam
, and
A. K.
 
Gupta
, “
Testing and Modeling Two Rockfill Materials
,”
Journal of Geotechnical and Geoenvironmental Engineering
129
, no. 
3
(March
2003
):
206
218
,
6.
X.
 
Zhang
,
W.
 
Hu
,
G.
 
Scaringi
,
B. A.
 
Baudet
, and
W.
 
Han
, “
Particle Shape Factors and Fractal Dimension after Large Shear Strains in Carbonate Sand
,”
Géotechnique Letters
8
, no. 
1
(March
2018
):
73
79
,
7.
A.
 
Lashkari
, “
Recommendations for Extension and Re-calibration of an Existing Sand Constitutive Model Taking into Account Varying Non-plastic Fines Content
,”
Soil Dynamics and Earthquake Engineering
61–62
(June–July
2014
):
212
238
,
8.
F.
 
Vahidi-Nia
,
A.
 
Lashkari
, and
S. M.
 
Binesh
, “
An Insight into the Mechanical Behavior of Binary Granular Soils
,”
Particuology
21
(August
2015
):
82
89
,
9.
A.
 
Lashkari
,
S. R.
 
Falsafizadeh
,
P. T.
 
Shourijeh
, and
M. J.
 
Alipour
, “
Instability of Loose Sand in Constant Volume Direct Simple Shear Tests in Relation to Particle Shape
,”
Acta Geotechnica
15
, no. 
9
(September
2020
):
2507
2527
,
10.
A. L. I.
 
Lashkari
and
V.
 
Jamali
, “
Global and Local Sand-Geosynthetic Interface Behaviour
,”
Géotechnique
71
, no. 
4
(April
2021
):
346
367
,
11.
J.
 
Yang
and
X. D.
 
Luo
, “
The Critical State Friction Angle of Granular Materials: Does It Depend on Grading?
Acta Geotechnica
13
, no. 
3
(June
2018
):
535
547
,
12.
A.
 
Soroush
and
R.
 
Jannatiaghdam
, “
Behavior of Rockfill Materials in Triaxial Compression Testing
,”
International Journal of Civil Engineering
10
, no. 
2
(June
2012
):
153
161
.
13.
K.
 
Shinohara
,
M.
 
Oida
, and
B.
 
Golman
, “
Effect of Particle Shape on Angle of Internal Friction by Triaxial Compression Test
,”
Powder Technology
107
, nos. 
1–2
(January
2000
):
131
136
,
14.
B. Y.
 
Zhang
,
Y. X.
 
Jie
, and
D. Z.
 
Kong
, “
Particle Size Distribution and Relative Breakage for a Cement Ellipsoid Aggregate
,”
Computers and Geotechnics
53
(September
2013
):
31
39
,
15.
G.
 
Yang
,
X.
 
Yan
,
S.
 
Nimbalkar
, and
J. B.
 
Xu
, “
Effect of Particle Shape and Confining Pressure on Breakage and Deformation of Artificial Rockfill
,”
International Journal of Geosynthetics and Ground Engineering
5
, no. 
2
(
2019
):
15
,
16.
D. H.
 
Liu
,
J. Q.
 
Yang
, and
B.
 
Dong
, “
Discrete Element Analysis of the Influence of Compaction Quality on Mechanical Properties of Rockfill Materials
,”
Computers and Geotechnics
151
(November
2022
):
104958
,
17.
M.
 
Tolomeo
and
G. R.
 
McDowell
, “
Modelling Real Particle Shape in DEM: A Comparison of Two Methods with Application to Railway Ballast
,”
International Journal of Rock Mechanics and Mining Sciences
159
(November
2022
):
105221
,
18.
M. Q.
 
Xu
,
N.
 
Guo
, and
Z. X.
 
Yang
, “
Particle Shape Effects on the Shear Behaviors of Granular Assemblies: Irregularity and Elongation
,”
Granular Matter
23
, no. 
2
(March
2021
):
25
,
19.
T.
 
Zhang
,
C.
 
Zhang
,
J. Q.
 
Zou
,
B. S.
 
Wang
,
F. N.
 
Song
, and
W. H.
 
Yang
, “
DEM Exploration of the Effect of Particle Shape on Particle Breakage in Granular Assemblies
,”
Computers and Geotechnics
122
(June
2020
):
103542
,
20.
J. C.
 
Santamarina
and
G. C.
 
Cho
, “
Soil Behaviour: The Role of Particle Shape
” (paper presentation, The Skempton Conference,
London
, March
2004
).
21.
P.
 
Liu
,
M. Q.
 
Meng
,
Y.
 
Xiao
,
H. L.
 
Liu
, and
G.
 
Yang
, “
Dynamic Properties of Polyurethane Foam Adhesive-Reinforced Gravels
,”
Science China Technological Sciences
64
, no. 
3
(March
2021
):
535
547
,
22.
M. H.
 
Wang
,
S. C.
 
Chi
,
Y. F.
 
Xie
, and
X. X.
 
Zhou
, “
Dynamic Parameters Inversion Analysis of Rockfill Materials Considering Interaction Effects Based on Weak Earthquakes
,”
Soil Dynamics and Earthquake Engineering
130
(March
2020
):
105968
,
23.
S. H.
 
Yan
,
S. C.
 
Chi
,
X. Q.
 
Shao
, and
Y.
 
Guo
, “
Effect of Size and Strain Rate on Particle Strength and Stress–Strain Properties of Rockfill Materials
,”
Soil Dynamics and Earthquake Engineering
162
, no. 
8
(November
2022
):
107422
,
24.
W.
 
Zhou
,
Y.
 
Chen
,
G.
 
Ma
,
L. F.
 
Yang
, and
X. L.
 
Chang
, “
A Modified Dynamic Shear Modulus Model for Rockfill Materials under a Wide Range of Shear Strain Amplitudes
,”
Soil Dynamics and Earthquake Engineering
92
(January
2017
):
229
238
,
25.
S.
 
Zhu
,
G.
 
Yang
,
Y.
 
Wen
, and
L.
 
Ou
, “
Dynamic Shear Modulus Reduction and Damping under High Confining Pressures for Gravels
,”
Géotechnique Letters
4
, no. 
3
(July
2014
):
179
186
,
26.
A. K.
 
Gupta
, “
Effects of Particle Size and Confining Pressure on Breakage Factor of Rockfill Materials Using Medium Triaxial Test
,”
Journal of Rock Mechanics and Geotechnical Engineering
8
, no. 
3
(June
2016
):
378
388
,
27.
X. D.
 
Qian
,
Q. H.
 
Donald
, and
R. D.
 
Woods
, “
Voids and Granulometry: Effects on Shear Modulus of Unsaturated Sands
,”
Journal of Geotechnical Engineering
119
, no. 
2
(February
1993
):
295
314
,
28.
M.
 
Meidani
,
A.
 
Shafiee
,
G.
 
Habibagahi
,
M. K.
 
Jafari
,
Y.
 
Mohri
,
A.
 
Ghahramani
, and
C. S.
 
Chang
, “
Granule Shear Effect on the Shape Modulus and Damping Ratio of Mixed Gravel and Clay
,”
Iranian Journal of Science and Technology
32
(October
2008
):
501
518
.
29.
Standard Test Methods for the Determination of the Modulus and Damping Properties of Soils Using the Cyclic Triaxial Apparatus
, ASTM D3999-91(2003) (
West Conshohocken
:
ASTM International
, approved August 15,
1991
), https://doi.org/10.1520/D3999-91R03
30.
Standard Test Methods for Uncompacted Void Content of Fine Aggregate (as Influenced by Particle Shape, Surface Texture, and Grading)
, ASTM C1252-98(2017) (
West Conshohocken
:
ASTM International
, approved July 28,
2017
), https://doi.org/10.1520/C1252-98
31.
A. A.
 
Araei
,
H. R.
 
Razeghi
,
S. H.
 
Tabatabaei
, and
A.
 
Ghalandarzadeh
, “
Loading Frequency Effect on Stiffness, Damping and Cyclic Strength of Modeled Rockfill Materials
,”
Soil Dynamics and Earthquake Engineering
33
, no. 
1
(February
2012
):
1
18
,
32.
G. C.
 
Cho
,
J.
 
Dodds
, and
J. C.
 
Santamarina
, “
Particle Shape Effects on Packing Density, Stiffness, and Strength: Natural and Crushed Sands
,”
Journal of Geotechnical and Geoenvironmental Engineering
132
, no. 
5
(May
2006
):
591
602
,
33.
S. J.
 
Blott
and
K.
 
Pye
, “
Particle Shape: A Review and New Methods of Characterization and Classification
,”
Sedimentology
55
, no. 
1
(February
2008
):
31
63
,
34.
A. A.
 
Araei
,
S. H.
 
Tabatabaei
, and
H. R.
 
Razeghi
, “
Cyclic and Post-cyclic Monotonic Behavior of Crushed Conglomerate Rockfill Material under Dry and Saturated Conditions
,”
Scientia Iranica
19
, no. 
1
(February
2012
):
64
76
,
35.
A.
 
Golchin
and
A.
 
Lashkari
, “
A Critical State Sand Model with Elastic-Plastic Coupling
,”
International Journal of Solids and Structures
51
, nos. 
15–16
(August
2014
):
2807
2825
,
36.
G.
 
Yang
,
H.-L.
 
Liu
, and
D.-Q.
 
Gao
, “
Study of Test and Mesomechanical Simulation of Influence of Vibration Frequency on Dynamic Deformation Property of Inverted Filler
,”
Rock and Soil Mechanics
32
(April
2011
):
419
423
.
37.
G.
 
Yang
,
K. L.
 
Liu
, and
H. L.
 
Liu
, “
Dynamic Deformation Behaviour of Coarse Aggregate under Cyclic Loading by PFC3D
,”
European Journal of Environmental and Civil Engineering
17
, no. 
sup1
(October
2013
):
s282
s293
,
38.
G.
 
Chen
,
H.
 
Pan
,
H.
 
Long
, and
X.
 
Li
, “
Dynamic Constitutive Model for Soils Considering Asymmetry of Skeleton Curve
,”
Journal of Rock Mechanics and Geotechnical Engineering
5
, no. 
5
(October
2013
):
400
405
,
39.
B. O.
 
Hardin
and
V. P.
 
Drnevich
, “
Shear Modulus and Damping in Soils: Measurement and Parameter Effects
,”
Journal of the Soil Mechanics and Foundations Division
98
, no. 
6
(June
1972
):
603
624
,
40.
K. H.
 
Stokoe
,
M. B.
 
Darendeli
,
R. D.
 
Andrus
, and
L. T.
 
Brown
, “
Dynamic Soil Properties: Laboratory, Field and Correlation Studies
,”
International Conference on Earthquake Geotechnical Engineering
6
, no. 
21
(December
1999
):
811
845
.
41.
V. C.
 
Xenaki
and
G. A.
 
Athanasopoulos
, “
Dynamic Properties and Liquefaction Resistance of Two Soil Materials in an Earthfill Dam—Laboratory Test Results
,”
Soil Dynamics and Earthquake Engineering
28
, no. 
8
(August
2008
):
605
620
,
42.
H. B.
 
Seed
,
R. T.
 
Wong
,
I. M.
 
Idriss
, and
K.
 
Tokimatsu
, “
Moduli and Damping Factors for Dynamic Analyses of Cohesionless Soils
,”
Journal of Geotechnical Engineering
112
, no. 
11
(November
1986
):
1016
1032
,
43.
K. M.
 
Rollins
,
M. D.
 
Evans
,
N. B.
 
Diehl
, and
W. D.
 
Daily
 III
, “
Shear Modulus and Damping Relationships for Gravels
,”
Journal of Geotechnical and Geoenvironmental Engineering
124
, no. 
5
(May
1998
):
396
405
,
44.
G. X.
 
Chen
,
Z. L.
 
Zhou
,
T.
 
Sun
,
Q.
 
Wu
,
L. Y.
 
Xu
,
S.
 
Khoshnevisan
, and
D. S.
 
Ling
, “
Shear Modulus and Damping Ratio of Sand–Gravel Mixtures over a Wide Strain Range
,”
Journal of Earthquake Engineering
2469
, no. 
8
(February
2017
):
1407
1440
,
45.
W. L.
 
Guo
and
J. G.
 
Zhu
, “
Particle Breakage Energy and Stress Dilatancy in Drained Shear of Rockfills
,”
Géotechnique Letters
7
, no. 
4
(December
2017
):
304
308
,
You do not currently have access to this content.