ABSTRACT

The process of evaluating pavement performance, conventionally performed by visual surveys, tends to be slow and inefficient in countries with extensive networks. The development of object detection algorithms and the popularization of smartphones open the possibility of more automated evaluation processes. This paper proposes the evaluation of the detection of vertical road signs and pavement defects from images produced by drivers using computer vision techniques. A collected set of YouTube videos produced by Brazilian drivers was used to train and validate a convolution neural network model. Results indicated an overall precision of 74.9 %, with observed detection deficiency only for longitudinal cracks and alligator cracking. Potholes, patches, and traffic signs are properly detected (precision between 73 and 95 %, depending on the detected object) for pavement management applications. Provided the diversity of data produced in videos and the overall results obtained in this research, the work herein indicates the possibility of massive citizen participation in the data collection process toward roadway quality.

References

1.
Confederação Nacional do Transporte (CNT)
, “
CNT - Pesquisa de Rodovias
,”
2021
, https://pesquisarodovias.cnt.org.br/
2.
TRIP: National Transportation Research Nonprofit
, “
America’s Interstate Highway System at 65: Meeting America’s Needs with a Reliable, Safe & Well-Maintained National Highway Network
,”
2021
, https://tripnet.org/wp-content/uploads/2021/06/TRIP_Interstate_Report_June_2021.pdf
3.
Standard Practice for Roads and Parking Lots Pavement Condition Index Survey
, ASTM D6433-20 (
West Conshohocken, PA
:
ASTM International
, approved June
1
,
2022
), https://doi.org/10.1520/D6433-20
4.
Avaliação Objetiva da Superfície de Pavimentos Flexíveis e Semi-rígidos - Procedimento
, DNIT 006/2003 (
Rio de Janeiro, Brazil
:
Departamento Nacional de Infraestrutura de Transportes
, approved August
6
,
2003
), https://www.gov.br/dnit/pt-br/assuntos/planejamento-e-pesquisa/ipr/coletanea-de-normas/coletanea-de-normas/procedimento-pro/dnit006_2003_pro.pdf
5.
Resolução Nº 5, de 27 de Abril de 2022
(
Brasília, Brazil
:
Departamento Nacional de Infraestrutura de Transportes
, approved June
1
,
2022
), https://www.gov.br/dnit/pt-br/central-de-conteudos/atos-normativos/tipo/resolucoes/resolucao-5-2022-dir-ba-080-de-29-04-2022.pdf
6.
Ministry of Road Transport & Highways
,
Annual Report 2020-21
,
2021
, https://morth.nic.in/sites/default/files/Annual%20Report%20-%202021%20(English)_compressed.pdf
7.
K. B.
 
Paz
,
J. P.
 
Alencar
,
L. C.
 
de Almeida
,
L. F. A. L.
 
Babadopulos
,
J. P. P.
 
Gomes
, and
J. B.
 
Soares
, “
Identificação de Defeitos do Tipo ‘Panela’ em Pavimento Asfáltico por Meio de Redes Neurais Convolucionais
” (paper presentation,
Anais do 34° Congresso de Pesquisa e Ensino em Transportes, online
, November
16–21
,
2020
),
863
874
. https://repositorio.ufc.br/handle/riufc/56719
8.
L.
 
Zhang
,
F.
 
Yang
,
Y. D.
 
Zhang
, and
Y. J.
 
Zhu
, “
Road Crack Detection Using Deep Convolutional Neural Network
,” in
2016 IEEE International Conference on Image Processing
(
Piscataway, NJ
:
Institute of Electrical and Electronics Engineers
,
2016
),
3708
3712
, https://doi.org/10.1109/ICIP.2016.7533052
9.
H.
 
Majidifard
,
P.
 
Jin
,
Y.
 
Adu-Gyamfi
, and
W. G.
 
Buttlar
, “
Pavement Image Datasets: A New Benchmark Dataset to Classify and Densify Pavement Distresses
,”
Transportation Research Record: Journal of the Transportation Research Board
2674
, no. 
2
(February
2020
):
328
339
,
10.
H.
 
Maeda
,
Y.
 
Sekimoto
,
T.
 
Seto
,
T.
 
Kashiyama
, and
H.
 
Omata
, “
Road Damage Detector Using Deep Neural Networks with Smartphone Images
,”
Computer-Aided Civil and Infrastructure Engineering
33
, no. 
12
(December
2018
):
1127
1141
,
11.
J.
 
Destri
 Jr.
,
N. P.
 
Borges
,
N. P.
 
Borges
 Jr.
,
S. C.
 
Cunha
, and
A. M.
 
Valente
, “
Detecção e Quantificação Automatizada de Trincas em Pavimentos de Rodovias
” (paper presentation,
33° Congresso de Pesquisa e Ensino em Transporte da ANPET
,
Balneário Camboriú, SC, Brazil
,
November
10–14,
2019
), https://www.anpet.org.br/anais/documentos/2019/Infraestrutura/Dimensionamento,%20Avalia%C3%A7%C3%A3o%20e%20Gest%C3%A3o%20de%20Pavimentos%20VII/2_77_AC.pdf
12.
T.
 
Rateke
and
A.
 
von Wangenheim
, “
Road Surface Detection and Differentiation Considering Surface Damages
,”
Autonomous Robots
45
(January
2021
):
299
312
,
13.
H.
 
Majidifard
,
Y.
 
Adu-Gyamfi
, and
W. G.
 
Buttlar
, “
Deep Machine Learning Approach to Develop a New Asphalt Pavement Condition Index
,”
Construction and Building Materials
247
(June
2020
):
118513
,
14.
A.
 
Bochkovskiy
,
C.
 
Wang
, and
H. M.
 
Liao
, “
YOLOv4: Optimal Speed and Accuracy of Object Detection
,”
arXiv preprint arXiv:2004.10934
,
2020
,
15.
M.
 
Serafim
, “
Labeled Images of Brazilian Pavement Produced by Drivers
,”
Kaggle
,
2022
, https://www.kaggle.com/datasets/mateusserafim/labeled-images-of-brazilian-pavements-by-drivers
16.
Defeitos nos Pavimentos Flexíveis e Semi-rígidos Terminologia
, DNIT 005/2003 (
Rio de Janeiro, Brazil
:
Departamento Nacional de Infraestrutura de Transportes
, approved August
6
,
2003
), https://www.gov.br/dnit/pt-br/assuntos/planejamento-e-pesquisa/ipr/coletanea-de-normas/coletanea-de-normas/terminologia-ter/dnit_005_2003_ter-1.pdf
17.
Manual de Sinalização Rodoviária, 3a Edition
(
Rio de Janeiro, Brazil
:
Departamento Nacional de Infraestrutura de Transportes
,
2010
), https://www.gov.br/dnit/pt-br/assuntos/planejamento-e-pesquisa/ipr/coletanea-de-manuais/vigentes/743_manualsinalizacaorodoviaria.pdf
18.
J. N.
 
Naranjo-Torres
,
M.
 
Mora
,
R.
 
Hernández-García
,
R. J.
 
Barrientos
,
C.
 
Fredes
, and
A.
 
Valenzuela
, “
A Review of Convolutional Neural Network Applied to Fruit Image Processing
,”
Applied Sciences
10
, no. 
10
(May
2020
):
3443
,
19.
J.
 
Redmon
, “
Darknet: Open-Source Neural Networks in C
,”
2013–2016
, https://pjreddie.com/darknet/
20.
T.
 
Lin
,
M.
 
Maire
,
S.
 
Belongie
,
L.
 
Bourdev
,
R.
 
Girshick
,
J.
 
Hays
,
P.
 
Perona
,
D.
 
Ramanan
,
C. L.
 
Zitnick
, and
P.
 
Dollár
, “
Microsoft COCO: Common Objects in Context
,”
arXiv preprint arXiv:1405.0312
,
2014
,
21.
F.
 
Zhuang
,
Z.
 
Qi
,
K.
 
Duan
,
D.
 
Xi
,
Y.
 
Zhu
,
H.
 
Zhu
,
H.
 
Xiong
, and
Q.
 
He
, “
A Comprehensive Survey on Transfer Learning
,”
Proceedings of the IEEE
109
, no. 
1
(January
2021
):
43
76
,
22.
H.
 
Zhu
,
H.
 
Wei
,
B.
 
Li
,
X.
 
Yuan
, and
N.
 
Kehtarnavaz
, “
A Review of Video Object Detection: Datasets, Metrics and Methods
,”
Applied Sciences
10
, no. 
21
(November
2020
):
7834
,
23.
H.
 
Rezatofighi
,
N.
 
Tsoi
,
J.
 
Gwak
,
A.
 
Sadeghian
,
I.
 
Reid
, and
S.
 
Savarese
, “
Generalized Intersection over Union: A Metric and a Loss for Bounding Box Regression
,” in
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(
Piscataway, NJ
:
Institute of Electrical and Electronics Engineers
,
2019
),
658
666
, https://doi.org/10.1109/CVPR.2019.00075
24.
A. K.
 
Dwivedi
, “
Performance Evaluation of Different Machine Learning Techniques for Prediction of Heart Disease
,”
Neural Computing and Applications
29
, no. 
10
(September
2018
):
685
693
,
25.
Caminhoneiro Amigo Oficial
, “
EP.106/22 Posto Fiscal Pena Forte Ceará
,”
YouTube video
, February
13
,
2022
, accessed June 9,
2022
, https://www.youtube.com/watch?app=desktop&v=uQe20SFR1cs
26.
Departamento Nacional de Infraestrutura de Transportes (DNIT)
, “
Condições do Pavimento
,”
Portal Brasileiro de Dados Abertos
,
2022
, https://dados.gov.br/dataset/condicoes-do-pavimento
27.
B.
 
Ghojogh
and
M.
 
Crowley
, “
The Theory behind Overfitting, Cross Validation, Regularization, Bagging, and Boosting: Tutorial
,”
arXiv preprint arXiv:1905:12787
,
2019
,
You do not currently have access to this content.