Abstract

In frozen soils, a portion of pore water remains unfrozen due to the effects of capillarity, adsorption, and possibly solute. The variation of the amount of unfrozen water and ice in a frozen soil, which is primarily influenced by subzero temperature, has great impacts on the physical and mechanical behavior of the soil and is critical for broad applications ranging from engineering to climate change. In the present study, the various methods that have been used for determining unfrozen water (and ice) content are comprehensively reviewed. Their principles, assumptions, advantages, and limitations are discussed. It is noted that there is yet no perfect way to accurately quantify unfrozen water content in frozen soils. In addition, the soil-freezing characteristic curve (SFCC) of a typical volcanic soil sampled in the Hokkaido prefecture of Japan is investigated. The unfrozen water content of the prepared soil specimens was measured using a cheap moisture sensor, which is based on the frequency domain reflectometry technique. The temperature of the specimens was determined by a rugged temperature sensor. Different numbers of freeze-thaw (F-T) cycles and different freezing/thawing methods (i.e., one- and three-dimensional) were considered, and their effects on the SFCC were investigated. The experimental results suggest that neither the F-T cycles nor the freezing/thawing methods had significant influence on the measured SFCC. The presented comprehensive review and experimental investigations are of importance for both the scientific and engineering communities.

References

1.
Koopmans
R. W. R.
and
Miller
R. D.
, “
Soil Freezing and Soil Water Characteristic Curves
,”
Soil Science Society of America Journal
30
, no. 
6
(November
1966
):
680
685
, https://doi.org/10.2136/sssaj1966.03615995003000060011x
2.
Spaans
E. J.
and
Baker
J. M.
, “
The Soil Freezing Characteristic: Its Measurement and Similarity to the Soil Moisture Characteristic
,”
Soil Science Society of America Journal
60
, no. 
1
(January
1996
):
13
19
, https://doi.org/10.2136/sssaj1996.03615995006000010005x
3.
Azmatch
T. F.
,
Sego
D. C.
,
Arenson
L. U.
, and
Biggar
K. W.
, “
Using Soil Freezing Characteristic Curve to Estimate the Hydraulic Conductivity Function of Partially Frozen Soils
,”
Cold Regions Science and Technology
83–84
(December
2012
):
103
109
, https://doi.org/10.1016/j.coldregions.2012.07.002
4.
Watanabe
K.
and
Osada
Y.
, “
Comparison of Hydraulic Conductivity in Frozen Saturated and Unfrozen Unsaturated Soils
,”
Vadose Zone Journal
15
, no. 
5
(May
2016
):
1
7
, https://doi.org/10.2136/vzj2015.11.0154
5.
Schafer
H.
, “
Freezing Characteristics of Mine Waste Tailings and Their Relation to Unsaturated Soil Properties
” (master’s thesis,
University of Alberta
,
2018
).
6.
Anderson
D. M.
and
Tice
A. R.
, “
Predicting Unfrozen Water Contents in Frozen Soils from Surface Area Measurements
,”
Highway Research Record
393
(
1972
):
12
18
.
7.
Liu
Z.
and
Yu
X.
, “
Predicting the Phase Composition Curve in Frozen Soils Using Index Properties: A Physico-empirical Approach
,”
Cold Regions Science and Technology
108
(December
2014
):
10
17
, https://doi.org/10.1016/j.coldregions.2014.09.003
8.
Mu
Q. Y.
,
Ng
C. W. W.
,
Zhou
C.
,
Zhou
G. G. D.
, and
Liao
H. J.
, “
A New Model for Capturing Void Ratio-Dependent Unfrozen Water Characteristics Curves
,”
Computers and Geotechnics
101
(September
2018
):
95
99
, https://doi.org/10.1016/j.compgeo.2018.04.019
9.
Mu
Q. Y.
, “
Hydro-mechanical Behaviour of Loess at Elevated and Sub-zero Temperatures
” (PhD diss.,
The Hong Kong University of Science and Technology
,
2017
).
10.
Kozlowski
T.
, “
A Comprehensive Method of Determining the Soil Unfrozen Water Curves: 1. Application of the Term of Convolution
,”
Cold Regions Science and Technology
36
, nos. 
1–3
(March
2003
):
71
79
, https://doi.org/10.1016/S0165-232X(03)00007-7
11.
Grant
S. A.
and
Sletten
R. S.
, “
Calculating Capillary Pressures in Frozen and Ice-Free Soils below the Melting Temperature
,”
Environmental Geology
42
, nos. 
2–3
(March
2002
):
130
136
, https://doi.org/10.1007/s00254-001-0482-y
12.
Smith
M.
, “
Models of Soil Freezing
,” in
Field and Theory: Lectures in Geocryology
, ed.
Church
M.
and
Slaymaker
O.
(
Vancouver, Canada
:
University of British Columbia Press
,
1985
),
96
120
.
13.
Mao
Y.
,
Romero
E. E.
, and
Gens
A.
, “
Ice Formation in Unsaturated Frozen Soils
,” in
Seventh International Conference on Unsaturated Soils
(
London
:
International Society for Soil Mechanics and Geotechnical Engineering
,
2018
),
597
602
.
14.
Na
S.
and
Sun
W.
, “
Computational Thermo-hydro-mechanics for Multiphase Freezing and Thawing Porous Media in the Finite Deformation Range
,”
Computer Methods in Applied Mechanics and Engineering
318
(May
2017
):
667
700
, https://doi.org/10.1016/j.cma.2017.01.028
15.
Kelleners
T. J.
and
Norton
J. B.
, “
Determining Water Retention in Seasonally Frozen Soils Using Hydra Impedance Sensors
,”
Soil Science Society of America Journal
76
, no. 
1
(January
2012
):
36
50
, https://doi.org/10.2136/sssaj2011.0222
16.
Fu
Z. T.
,
Wu
Q. B.
,
Dyck
M.
, and
He
H. L.
, “
A New Model to Describe Soil Freezing and Thawing Characteristic Curve
” (in Chinese),
Journal of Glaciology and Geocryology
43
, no. 
1
(
2021
):
1
21
.
17.
Zhang
S.
,
Teng
J.
,
He
Z.
,
Liu
Y.
,
Liang
S.
,
Yao
Y.
, and
Sheng
D.
, “
Canopy Effect Caused by Vapour Transfer in Covered Freezing Soils
,”
Géotechnique
66
, no. 
11
(November
2016
):
927
940
, https://doi.org/10.1680/jgeot.16.P.016
18.
Yu
L.
,
Zeng
Y.
,
Wen
J.
, and
Su
Z.
, “
Liquid‐Vapor‐Air Flow in the Frozen Soil
,”
Journal of Geophysical Research: Atmospheres
123
, no. 
14
(July
2018
):
7393
7415
, https://doi.org/10.1029/2018JD028502
19.
Xu
J.
,
Lan
W.
,
Li
Y.
,
Wang
S.
,
Cheng
W.-C.
, and
Yao
X.
, “
Heat, Water and Solute Transfer in Saline Loess under Uniaxial Freezing Condition
,”
Computers and Geotechnics
118
(February
2020
): 103319, https://doi.org/10.1016/j.compgeo.2019.103319
20.
Lara
R. P.
,
Berg
A.
,
Warland
J.
, and
Parkin
G.
, “
Implications of Measurement Metrics on Soil Freezing Curves: A Simulation of Freeze-Thaw Hysteresis
,”
Authorea Preprints
, March 21, 2021, http://web.archive.org/web/20210612003220/https://www.authorea.com/doi/full/10.22541/au.160466100.02966301
21.
Seo
Y.
,
Kim
J.-H.
, and
Seo
U.-J.
, “
Eco-Friendly Snow Melting Systems Developed for Modern Expressways
,”
Journal of Testing and Evaluation
47
, no. 
5
(February
2019
):
3432
3447
, https://doi.org/10.1520/JTE20180161
22.
Li
K.-Q.
,
Li
D.-Q.
, and
Liu
Y.
, “
Meso-scale Investigations on the Effective Thermal Conductivity of Multi-phase Materials Using the Finite Element Method
,”
International Journal of Heat and Mass Transfer
151
(April
2020
): 119383, https://doi.org/10.1016/j.ijheatmasstransfer.2020.119383
23.
Kanie
S.
,
Zheng
H.
, and
Ogura
H.
, “
Freezing Technology: Challenges and Prospects for Sustainable Development in Urban Infrastructure
,”
Journal of the Civil Engineering Forum
5
, no. 
2
(May
2019
):
169
178
, https://doi.org/10.22146/jcef.43945
24.
Huang
R.-C.
,
Wu
P.-K.
, and
Chang
M.
, “
Influence of Boundary Insulation on the Growth of Frozen Soils during AGF Modeling
,”
Journal of Testing and Evaluation
49
, no. 
2
(June
2019
):
977
994
, https://doi.org/10.1520/JTE20180783
25.
Ren
J.-P.
and
Vanapalli
S. K.
, “
Comparison of Soil‐Freezing and Soil-Water Characteristic Curves of Two Canadian Soils
,”
Vadose Zone Journal
18
, no. 
1
(June
2019
):
1
14
, https://doi.org/10.2136/vzj2018.10.0185
26.
Bouyoucos
G. J.
and
McCool
M. M.
,
The Freezing Point Method as a New Means of Measuring the Concentration of the Soil Solution Directly in the Soil, Michigan Agricultural Experiment Station Technical Bulletin No. 24
(
East Lansing, MI
:
Michigan State University
,
1916
).
27.
Bouyoucos
G. J.
, “
Measurement of the Inactive or Unfree Moisture in the Soil by Means of the Dilatometer Method
,”
Journal of Agricultural Research
8
, no. 
6
(February
1917
):
195
217
.
28.
Bouyoucos
G. J.
,
Classification and Measurement of the Different Forms of Water in the Soil by Means of the Dilatometer Method, Michigan Agricultural Experiment Station Technical Bulletin No. 36
(
East Lansing, MI
:
Michigan State University
,
1917
).
29.
Bouyoucos
G. J.
, “
A New Classification of the Soil Moisture
,”
Soil Science
11
, no. 
1
(January
1921
):
33
48
, https://doi.org/10.1097/00010694-192101000-00002
30.
Buehrer
T. F.
and
Aldrich
D. G.
 Jr.
,
Studies in Soils Structure VI. Water Bound by Individual Soil Constituents as Influenced by Puddling, Agricultural Experiment Station Technical Bulletin No. 110
(
Tuscon, AZ
:
University of Arizona
,
1946
).
31.
Anderson
D. M.
and
Morgenstern
N. R.
, “
Physics, Chemistry, and Mechanics of Frozen Ground: A Review
,” in
Second International Conference on Permafrost
(
Washington, DC
:
National Academy of Sciences
,
1973
),
257
288
.
32.
Elkhoraibi
M. C. E.
, “
Volume Change of Frozen Soils
” (PhD diss.,
Carleton University
,
1975
).
33.
Pusch
R.
, “
Unfrozen Water as a Function of Clay Microstructure
,”
Engineering Geology
13
, nos. 
1–4
(April
1979
):
157
162
, https://doi.org/10.1016/0013-7952(79)90028-0
34.
Patterson
D. E.
and
Smith
M. W.
, “
The Measurement of Unfrozen Water Content by Time Domain Reflectometry: Results from Laboratory Tests
,”
Canadian Geotechnical Journal
18
, no. 
1
(February
1981
):
131
144
, https://doi.org/10.1139/t81-012
35.
Spaans
E. J.
and
Baker
J. M.
, “
Examining the Use of Time Domain Reflectometry for Measuring Liquid Water Content in Frozen Soil
,”
Water Resources Research
31
, no. 
12
(December
1995
):
2917
2925
, https://doi.org/10.1029/95WR02769
36.
Bouyoucos
G. J.
, “
The Dilatometer Method as an Indirect Means of Determining the Permanent Wilting Point of Soils
,”
Soil Science
42
, no. 
3
(September
1936
):
217
224
, https://doi.org/10.1097/00010694-193609000-00006
37.
Smith
M. W.
and
Tice
A. R.
,
Measurement of the Unfrozen Water Content of Soils. Comparison of NMR (Nuclear Magnetic Resonance) and TDR (Time Domain Reflectometry) Methods, Report No. CRREL 88-18
(
Hanover, NH
:
Cold Regions Research and Engineering Laboratory
,
1988
).
38.
Lovell
C. W.
 Jr.
, “
Temperature Effects on Phase Composition and Strength of Partially-Frozen Soil
,”
Highway Research Board Bulletin
168
(
1957
):
74
95
.
39.
Kolaian
J. H.
and
Low
P. F.
, “
Calorimetric Determination of Unfrozen Water in Montmorillonite Pastes
,”
Soil Science
95
, no. 
6
(June
1963
):
376
384
, https://doi.org/10.1097/00010694-196306000-00002
40.
Williams
P. J.
, “
Specific Heats and Unfrozen Water Content of Frozen Soils
,” in
First Canadian Conference on Permafrost
(
Ottawa, Canada
:
National Research Council of Canada
,
1963
),
109
126
.
41.
Jame
Y. W.
and
Norum
D. I.
, “
Phase Composition of a Partially Frozen Soil
” (paper presentation,
1972 Fall Annual Meeting, American Geophysical Union
,
San Francisco, CA
, December 4–7,
1972
).
42.
Bronfenbrener
L.
and
Korin
E.
, “
Experimental Studies of Water Crystallization in Porous Media
,”
Chemical Engineering and Processing: Process Intensification
41
, no. 
4
(April
2002
):
357
363
, https://doi.org/10.1016/S0255-2701(01)00156-8
43.
Leng
Y.-F.
,
Zhang
X.-F.
,
Yang
F.-X.
,
Jiang
L.
, and
Zhao
Y.-M.
, “
Experimental Research on Unfrozen Water Content of Frozen Soils by Calorimetry
” (in Chinese),
Rock and Soil Mechanics
31
, no. 
12
(
2010
):
3758
3764
.
44.
Anderson
D. M.
and
Tice
A. R.
, “
The Unfrozen Interfacial Phase in Frozen Soil Water Systems
,” in
Physical Aspects of Soil Water and Salts in Ecosystems
, ed.
Hadas
A.
,
Swartzendruber
D.
,
Rijtema
P. E.
,
Fuchs
M.
, and
Yaron
B.
(
Berlin
:
Springer
,
1973
),
107
124
, https://doi.org/10.1007/978-3-642-65523-4_12
45.
Ming
F.
,
Li
D.-Q.
, and
Liu
Y.-H.
, “
A Predictive Model of Unfrozen Water Content Including the Influence of Pressure
,”
Permafrost and Periglacial Processes
31
, no. 
1
(February
2020
):
213
222
, https://doi.org/10.1002/ppp.2037
46.
Anderson
D. M.
and
Tice
A. R.
, “
Low-Temperature Phases on Interfacial Water in Clay-Water Systems
,”
Soil Science Society of America Journal
35
, no. 
1
(
1971
):
47
54
, https://doi.org/10.2136/sssaj1971.03615995003500010019x
47.
Kozlowski
T.
, “
A Comprehensive Method of Determining the Soil Unfrozen Water Curves: 2. Stages of the Phase Change Process in Frozen Soil–Water System
,”
Cold Regions Science and Technology
36
, nos. 
1–3
(March
2003
):
81
92
, https://doi.org/10.1016/S0165-232X(03)00006-5
48.
Brown
S. C.
and
Payne
D.
, “
Frost Action in Clay Soils. I. A Temperature‐Step and Equilibrate Differential Scanning Calorimeter Technique for Unfrozen Water Content Determinations Below 0°C
,”
Soil Science
41
, no. 
4
(December
1990
):
535
546
, https://doi.org/10.1111/j.1365-2389.1990.tb00224.x
49.
Kozlowski
T.
and
Nartowska
E.
, “
Unfrozen Water Content in Representative Bentonites of Different Origin Subjected to Cyclic Freezing and Thawing
,”
Vadose Zone Journal
12
, no. 
1
(January
2013
):
1
11
, https://doi.org/10.2136/vzj2012.0057
50.
Nersesova
Z. A.
and
Tsytovich
N. A.
, “
Unfrozen Water in Frozen Soils
,” in
First International Conference on Permafrost
(
Washington, DC
:
National Academy of Sciences
,
1963
),
230
234
.
51.
Anderson
D. M.
and
Hoekstra
P.
, “
Crystallization of Clay-Adsorbed Water
,”
Science
149
, no. 
3681
(July
1965
):
318
319
, https://doi.org/10.1126/science.149.3681.318
52.
Anderson
D. M.
and
Hoekstra
P.
, “
Migration of Interlamellar Water during Freezing and Thawing of Wyoming Bentonite
,”
Soil Science Society of America Journal
29
, no. 
5
(September
1965
):
498
504
, https://doi.org/10.2136/sssaj1965.03615995002900050010x
53.
Stein
J.
and
Kane
D. L.
, “
Monitoring the Unfrozen Water Content of Soil and Snow Using Time Domain Reflectometry
,”
Water Resources Research
19
, no. 
6
(December
1983
):
1573
1584
, https://doi.org/10.1029/WR019i006p01573
54.
Standard Terminology Relating to Frozen Soil and Rock
, ASTM D7099–04 (2018) (West Conshohocken, PA: ASTM International, approved July 1,
2018
), https://doi.org/10.1520/D7099-04R18
55.
Topp
G. C.
,
Davis
J. L.
, and
Annan
A. P.
, “
Electromagnetic Determination of Soil Water Content: Measurements in Coaxial Transmission Lines
,”
Water Resources Research
16
, no. 
3
(June
1980
):
574
582
, https://doi.org/10.1029/WR016i003p00574
56.
Patterson
D. E.
and
Smith
M. W.
, “
The Use of Time Domain Reflectometry for the Measurement of Unfrozen Water Content in Frozen Soils
,”
Cold Regions Science and Technology
3
, nos. 
2–3
(May
1980
):
205
210
, https://doi.org/10.1016/0165-232X(80)90026-9
57.
Fen-Chong
T.
,
Fabbri
A.
,
Guilbaud
J.-P.
, and
Coussy
O.
, “
Determination of Liquid Water Content and Dielectric Constant in Porous Media by the Capacitive Method
,”
Comptes Rendus Mécanique
332
, no. 
8
(August
2004
):
639
645
, https://doi.org/10.1016/j.crme.2004.02.028
58.
Fabbri
A.
,
Fen-Chong
T.
, and
Coussy
O.
, “
Dielectric Capacity, Liquid Water Content, and Pore Structure of Thawing–Freezing Materials
,”
Cold Regions Science and Technology
44
, no. 
1
(January
2006
):
52
66
, https://doi.org/10.1016/j.coldregions.2005.07.001
59.
Watanabe
K.
and
Wake
T.
, “
Measurement of Unfrozen Water Content and Relative Permittivity of Frozen Unsaturated Soil Using NMR and TDR
,”
Cold Regions Science and Technology
59
, no. 
1
(October
2009
):
34
41
, https://doi.org/10.1016/j.coldregions.2009.05.011
60.
Caicedo
B.
, “
Physical Modelling of Freezing and Thawing of Unsaturated Soils
,”
Géotechnique
67
, no. 
2
(February
2017
):
106
126
, https://doi.org/10.1680/jgeot.15.P.098
61.
He
H.-L.
,
Dyck
M.
,
Zhao
Y.
,
Si
B.
,
Jin
H.
,
Zhang
T.
,
Lv
J.
, and
Wang
J.
, “
Evaluation of Five Composite Dielectric Mixing Models for Understanding Relationships between Effective Permittivity and Unfrozen Water Content
,”
Cold Regions Science and Technology
130
(October
2016
):
33
42
, https://doi.org/10.1016/j.coldregions.2016.07.006
62.
Baker
T. H. W.
,
Davis
J. L.
,
Hayhoe
H. N.
, and
Topp
G. C.
, “
Locating the Frozen–Unfrozen Interface in Soils Using Time-Domain Reflectometry
,”
Canadian Geotechnical Journal
19
, no. 
4
(November
1982
):
511
517
, https://doi.org/10.1139/t82-056
63.
McIsaac
G.
, “
Time Domain Reflectometry Measurement of Water Content and Electrical Conductivity Using a Polyolefin Coated TDR Probe
” (master’s thesis,
University of Waterloo
,
2010
).
64.
Liu
Z.
,
Zhang
B.
,
Yu
X. B.
, and
Tao
J.
, “
A New Method for Soil Water Characteristic Curve Measurement Based on Similarities between Soil Freezing and Drying
,”
Geotechnical Testing Journal
35
, no. 
1
(January
2012
):
2
10
, https://doi.org/10.1520/GTJ103653
65.
Liu
X.
,
Ren
T.
, and
Horton
R.
, “
Determination of Soil Bulk Density with Thermo-Time Domain Reflectometry Sensors
,”
Soil Science Society of America Journal
72
, no. 
4
(July
2008
):
1000
1005
, https://doi.org/10.2136/sssaj2007.0332
66.
He
H.-L.
,
Dyck
M. F.
,
Horton
R.
,
Ren
T.
,
Bristow
K. L.
,
Lv
J.
, and
Si
B.
, “
Development and Application of the Heat Pulse Method for Soil Physical Measurements
,”
Reviews of Geophysics
56
, no. 
4
(August
2018
):
567
620
, https://doi.org/10.1029/2017RG000584
67.
Tian
Z.
,
Kojima
Y.
,
Heitman
J. L.
,
Horton
R.
, and
Ren
T.
, “
Advances in Thermo‐Time Domain Reflectometry Technique: Measuring Ice Content in Partially Frozen Soils
,”
Soil Science Society of America Journal
84
, no. 
5
(November
2020
):
1519
1526
, https://doi.org/10.1002/saj2.20160
68.
Kojima
Y.
,
Nakano
Y.
,
Kato
C.
,
Noborio
K.
,
Kamiya
K.
, and
Horton
R.
, “
A New Thermo-Time Domain Reflectometry Approach to Quantify Soil Ice Content at Temperatures Near the Freezing Point
,”
Cold Regions Science and Technology
174
(June
2020
): 103060, https://doi.org/10.1016/j.coldregions.2020.103060
69.
Wu
M.
,
Tan
X.
,
Huang
J.
,
Wu
J.
, and
Jansson
P.-E.
, “
Solute and Water Effects on Soil Freezing Characteristics Based on Laboratory Experiments
,”
Cold Regions Science and Technology
115
(July
2015
):
22
29
, https://doi.org/10.1016/j.coldregions.2015.03.007
70.
Tan
X.
,
Wu
M.
,
Huang
J.
,
Wu
J.
, and
Chen
J.
, “
Similarity of Soil Freezing Characteristic and Soil Water Characteristic: Application in Saline Frozen Soil Hydraulic Properties Prediction
,”
Cold Regions Science and Technology
173
(May
2020
): 102876, https://doi.org/10.1016/j.coldregions.2019.102876
71.
Patterson
D. E.
, “
The Measurement of Unfrozen Water Content in Freezing Soils by Time Domain Reflectometry
” (master’s thesis,
Carleton University
,
1980
).
72.
Amankwah
S. K.
, “
Quantifying the Soil Freezing Characteristic Curve in Laboratory and Field Soils
” (master’s thesis,
University of Saskatchewan
,
2020
).
73.
Yoshikawa
K.
and
Overduin
P. P.
, “
Comparing Unfrozen Water Content Measurements of Frozen Soil Using Recently Developed Commercial Sensors
,”
Cold Regions Science and Technology
42
, no. 
3
(November
2005
):
250
256
, https://doi.org/10.1016/j.coldregions.2005.03.001
74.
Vaz
C. M. P.
,
Jones
S.
,
Meding
M.
, and
Tuller
M.
, “
Evaluation of Standard Calibration Functions for Eight Electromagnetic Soil Moisture Sensors
,”
Vadose Zone Journal
12
, no. 
2
(May
2013
):
1
16
, https://doi.org/10.2136/vzj2012.0160
75.
Chang
D.
,
Li
X.
,
Liu
J.-K.
, and
Chen
X.
, “
Study Progress and Comparison of Soil Moisture Content Measurement Methods
” (in Chinese),
Geotechnical Investigation & Surveying
9
(
2014
): 17–22+35.
76.
Xue
K.
,
Wen
Z.
,
Zhang
M.-L.
,
Chen
L.-Z.
, and
Li
D.-S.
, “
The Applicability Evaluation of 5TM on Heat and Moisture Research in Frozen Soil
” (in Chinese),
Journal of Engineering Geology
23
, no. 
S1
(
2015
):
668
675
.
77.
Wang
M.
,
Li
X.
,
Liu
Z.
,
Liu
J.
, and
Chang
D.
, “
Application of PIV Technique in Model Test of Frost Heave of Unsaturated Soil
,”
Journal of Cold Regions Engineering
34
, no. 
3
(September
2020
): 04020014, https://doi.org/10.1061/(ASCE)CR.1943-5495.0000216
78.
He
H.-L.
and
Dyck
M.
, “
Application of Multiphase Dielectric Mixing Models for Understanding the Effective Dielectric Permittivity of Frozen Soils
,”
Vadose Zone Journal
12
, no. 
1
(February
2013
):
1
22
, https://doi.org/10.2136/vzj2012.0060
79.
Veldkamp
E.
and
O’Brien
J. J.
, “
Calibration of a Frequency Domain Reflectometry Sensor for Humid Tropical Soils of Volcanic Origin
,”
Soil Science Society of America Journal
64
, no. 
5
(September
2000
):
1549
1553
, https://doi.org/10.2136/sssaj2000.6451549x
80.
Zhou
X.
,
Zhou
J.
,
Kinzelbach
W.
, and
Stauffer
F.
, “
Simultaneous Measurement of Unfrozen Water Content and Ice Content in Frozen Soil Using Gamma Ray Attenuation and TDR
,”
Water Resources Research
50
, no. 
12
(October
2014
):
9630
9655
, https://doi.org/10.1002/2014WR015640
81.
Wu
T. H.
, “
A Nuclear Magnetic Resonance Study of Water in Clay
,”
Journal of Geophysical Research
69
, no. 
6
(March
1964
):
1083
1091
, https://doi.org/10.1029/JZ069i006p01083
82.
Tice
A. R.
,
Burrous
C. M.
, and
Anderson
D. M.
, “
Determination of Unfrozen Water in Frozen Soil by Pulsed Nuclear Magnetic Resonance
,” in
Third International Conferences on Permafrost
(
Ottawa, Canada
:
National Research Council of Canada
,
1978
),
150
155
.
83.
Tice
A. R.
,
Oliphant
J. L.
,
Nakano
Y.
, and
Jenkins
T. F.
,
Relationship between the Ice and Unfrozen Water Phases in Frozen Soil as Determined by Pulsed Nuclear Magnetic Resonance and Physical Desorption Data, Report No. CRREL 82-15
(
Hanover, NH
:
Cold Regions Research and Engineering Laboratory
,
1982
).
84.
Tice
A. R.
,
Black
P. B.
, and
Berg
R. L.
,
Unfrozen Water Contents of Undisturbed and Remolded Alaskan Silt as Determined by Nuclear Magnetic Resonance, Report No. CRREL 88-19
(
Hanover, NH
:
Cold Regions Research and Engineering Laboratory
,
1988
).
85.
Tice
A. R.
and
Oliphant
J. L.
, “
The Effects of Magnetic Particles on the Unfrozen Water Content of Frozen Soils Determined by Nuclear Magnetic Resonance
,”
Soil Science
138
, no. 
1
(July
1984
):
63
73
, https://doi.org/10.1097/00010694-198407000-00010
86.
Ishizaki
T.
,
Maruyama
M.
,
Furukawa
Y.
, and
Dash
J. G.
, “
Premelting of Ice in Porous Silica Glass
,”
Journal of Crystal Growth
163
, no. 
4
(June
1996
):
455
460
, https://doi.org/10.1016/0022-0248(95)00990-6
87.
Watanabe
K.
and
Mizoguchi
M.
, “
Amount of Unfrozen Water in Frozen Porous Media Saturated with Solution
,”
Cold Regions Science and Technology
34
, no. 
2
(April
2002
):
103
110
, https://doi.org/10.1016/S0165-232X(01)00063-5
88.
Tian
H.
,
Wei
C.
,
Wei
H.
, and
Zhou
J.
, “
Freezing and Thawing Characteristics of Frozen Soils: Bound Water Content and Hysteresis Phenomenon
,”
Cold Regions Science and Technology
103
(July
2014
):
74
81
, https://doi.org/10.1016/j.coldregions.2014.03.007
89.
Ma
T.
,
Wei
C.
,
Xia
X.
,
Zhou
J.
, and
Chen
P.
, “
Soil Freezing and Soil Water Retention Characteristics: Connection and Solute Effects
,”
Journal of Performance of Constructed Facilities
31
, no. 
1
(February
2017
): D4015001, https://doi.org/10.1061/(ASCE)CF.1943-5509.0000851
90.
Kruse
A. M.
,
Darrow
M. M.
, and
Akagawa
S.
, “
Improvements in Measuring Unfrozen Water in Frozen Soils Using the Pulsed Nuclear Magnetic Resonance Method
,”
Journal of Cold Regions Engineering
32
, no. 
1
(March
2018
): 04017016, https://doi.org/10.1061/(ASCE)CR.1943-5495.0000141
91.
Tokoro
T.
and
Ishikawa
T.
, “
Measurement of Unfrozen Water in Unsaturated Soil with Pulse NMR
,”
Japanese Geotechnical Society Special Publication
7
, no. 
2
(April
2019
):
582
586
, https://doi.org/10.3208/jgssp.v07.090
92.
Li
Z.-M.
,
Chen
J.
, and
Sugimoto
M.
, “
Pulsed NMR Measurements of Unfrozen Water Content in Partially Frozen Soil
,”
Journal of Cold Regions Engineering
34
, no. 
3
(September
2020
): 04020013, https://doi.org/10.1061/(ASCE)CR.1943-5495.0000220
93.
Akagawa
S.
,
Iwahana
G.
,
Watanabe
K.
,
Chuvilin
E. M.
,
Istomin
V. A.
, and
Hinkel
K. M.
, “
Improvement of Pulse NMR Technology for Determination of Unfrozen Water Content in Frozen Soils
,” in
10th International Conference on Permafrost
(
Longyearbyen, Norway
:
International Permafrost Association
,
2012
),
21
26
.
94.
Kruse
A. M.
and
Darrow
M. M.
, “
Adsorbed Cation Effects on Unfrozen Water in Fine-Grained Frozen Soil Measured Using Pulsed Nuclear Magnetic Resonance
,”
Cold Regions Science and Technology
142
(October
2017
):
42
54
, https://doi.org/10.1016/j.coldregions.2017.07.006
95.
Tan
L.
,
Wei
C.-F.
,
Tian
H.-H.
,
Zhou
J.-Z.
, and
Wei
H.-Z.
, “
Experimental Study of Unfrozen Water Content of Frozen Soils by Low-Field Nuclear Magnetic Resonance
” (in Chinese),
Rock and Soil Mechanics
36
, no. 
6
(
2015
):
1566
1572
.
96.
Kong
L.
,
Wang
Y.
,
Sun
W.
, and
Qi
J.
, “
Influence of Plasticity on Unfrozen Water Content of Frozen Soils as Determined by Nuclear Magnetic Resonance
,”
Cold Regions Science and Technology
172
(April
2020
): 102993, https://doi.org/10.1016/j.coldregions.2020.102993
97.
Chai
M.
,
Zhang
J.
,
Zhang
H.
,
Mu
Y.
,
Sun
G.
, and
Yin
Z.
, “
A Method for Calculating Unfrozen Water Content of Silty Clay with Consideration of Freezing Point
,”
Applied Clay Science
161
(September
2018
):
474
481
, https://doi.org/10.1016/j.clay.2018.05.015
98.
Zhang
L.-X.
,
Xu
X.
,
Zhang
Z.
, and
Deng
Y.
, “
Experimental Study of the Relationship between the Unfrozen Water Content of Frozen Soil and Pressure
” (in Chinese),
Journal of Glaciology and Geocryology
20
, no. 
2
(
1998
):
124
127
.
99.
Thimus
J. F.
,
Aguirre-Puente
J.
, and
Cohen-Tenoudji
F.
, “
Determination of Unfrozen Water Content of an Overconsolidated Clay down to −160°C by Sonic Approaches – Comparison with Classical Methods
,” in
International Symposium on Ground Freezing
(
Rotterdam, the Netherlands
:
A. A. Balkema
,
1991
),
83
88
.
100.
Christ
M.
and
Park
J.-B.
, “
Ultrasonic Technique as Tool for Determining Physical and Mechanical Properties of Frozen Soils
,”
Cold Regions Science and Technology
58
, no. 
3
(September
2009
):
136
142
, https://doi.org/10.1016/j.coldregions.2009.05.008
101.
Fabbri
A.
,
Fen-Chong
T.
,
Azouni
A.
, and
Thimus
J.-F.
, “
Investigation of Water to Ice Phase Change in Porous Media by Ultrasonic and Dielectric Measurements
,”
Journal of Cold Regions Engineering
23
, no. 
2
(June
2009
):
69
90
, https://doi.org/10.1061/(ASCE)0887-381X(2009)23:2(69)
102.
Li
D.-Q.
,
Ming
F.
,
Huang
X.
, and
Zhang
Y.
, “
Application of Ultrasonic Technology for Measuring Physical and Mechanical Properties of Frozen Silty Clay
,” in
16th International Conference on Cold Regions Engineering
, ed.
Guthrie
W. S.
(
Reston, VA
:
American Society of Civil Engineers
,
2015
),
1
12
, https://doi.org/10.1061/9780784479315.001
103.
Lyu
C.
,
Amiri
S. A. G.
,
Grimstad
G.
,
Høyland
K. V.
, and
Ingeman-Nielsen
T.
, “
Comparison of Geoacoustic Models for Unfrozen Water Content Estimation
,”
Journal of Geophysical Research: Solid Earth
125
, no. 
10
(September
2020
): e2020JB019766, https://doi.org/10.1029/2020JB019766
104.
Chuvilin
E. M.
,
Istomin
V. A.
, and
Safonov
S. S.
.
Method for determination of pore water content in equilibrium with gas hydrate in dispersed media
. U.S. Patent 12,631,064, filed December 4, 2009, and issued June 10,
2010
.
105.
Chuvilin
E. M.
,
Istomin
V. A.
, and
Safonov
S. S.
, “
Residual Nonclathrated Water in Sediments in Equilibrium with Gas Hydrate: Comparison with Unfrozen Water
,”
Cold Regions Science and Technology
68
, nos. 
1–2
(August
2011
):
68
73
, https://doi.org/10.1016/j.coldregions.2011.05.006
106.
Istomin
V.
,
Chuvilin
E.
,
Bukhanov
B.
, and
Uchida
T.
, “
Pore Water Content in Equilibrium with Ice or Gas Hydrate in Sediments
,”
Cold Regions Science and Technology
137
(May
2017
):
60
67
, https://doi.org/10.1016/j.coldregions.2017.02.005
107.
Istomin
V.
,
Chuvilin
E.
, and
Bukhanov
B.
, “
Fast Estimation of Unfrozen Water Content in Frozen Soils
,”
Kriosfera Zemli
21
, no. 
6
(
2017
):
116
120
, https://doi.org/10.21782/EC1560-7496-2017-6
108.
Mao
Y.
,
Romero
E.
, and
Gens
A.
, “
Exploring Ice Content on Partially Saturated Soils Using Dielectric Permittivity and Bulk Electrical Conductivity Measurements
,”
E3S Web of Conferences
9
(September
2016
): 07005, https://doi.org/10.1051/e3sconf/20160907005
109.
Tang
L.
,
Wang
K.
,
Jin
L.
,
Yang
G.
,
Jia
H.
, and
Taoum
A.
, “
A Resistivity Model for Testing Unfrozen Water Content of Frozen Soil
,”
Cold Regions Science and Technology
153
(September
2018
):
55
63
, https://doi.org/10.1016/j.coldregions.2018.05.003
110.
Tang
L.
,
Wang
X.
,
Lan
F.
,
Qiu
P.
, and
Jin
L.
, “
Measuring the Content of Unfrozen Water in Frozen Soil Based on Resistivity
,”
International Journal of Electrochemical Science
15
(August
2020
):
9459
9472
, https://doi.org/10.20964/2020.09.57, https://doi.org/10.20964/2020.09.57
111.
Liu
G.
and
Si
B.
, “
Soil Ice Content Measurement Using a Heat Pulse Probe Method
,”
Canadian Journal of Soil Science
91
, no. 
2
(July
2011
):
235
246
, https://doi.org/10.4141/cjss09120
112.
Zhang
Y.
,
Treberg
M.
, and
Carey
S. K.
, “
Evaluation of the Heat Pulse Probe Method for Determining Frozen Soil Moisture Content
,”
Water Resources Research
47
, no. 
5
(May
2011
):
1
11
, https://doi.org/10.1029/2010WR010085
113.
Kojima
Y.
,
Heitman
J. L.
,
Flerchinger
G. N.
,
Ren
T.
,
Ewing
R. P.
, and
Horton
R.
, “
Field Test and Sensitivity Analysis of a Sensible Heat Balance Method to Determine Soil Ice Contents
,”
Vadose Zone Journal
13
, no. 
9
(September
2014
):
1
10
, https://doi.org/10.2136/vzj2014.04.0036
114.
Anderson
D. M.
, “
Phase Composition of Frozen Montmorillonite-Water Mixtures from Heat Capacity Measurements
,”
Soil Science Society of America Journal
30
, no. 
6
(November
1966
):
670
675
, https://doi.org/10.2136/sssaj1966.03615995003000060009x
115.
Chen
Y. C.
,
Zhang
X. F.
, and
Yi
Z. Z.
, “
A Device for Measuring Unfrozen Water Content in Frozen Soils
” (in Chinese),
Oil-Gas Field Surface Engineering
14
, no. 
4
(
1995
):
49
51
.
116.
Nguyen
T. B.
, “
Effect Evaluation of Grass on Infiltration and Seepage of Volcanic Soil Ground
” (master’s thesis,
Hokkaido University
,
2017
).
117.
Ishikawa
T.
,
Tokoro
T.
,
Nakamura
D.
, and
Yamashita
S.
, “
Influence of Freeze-Thaw Action on Air-Permeability of Unsaturated Soil Ground
” (paper presentation,
Third International Conference on Geotechnique, Construction Materials and Environment
,
Nagoya, Japan
, November 13–15,
2013
).
118.
Ren
J.-P.
and
Vanapalli
S. K.
, “
Effect of Freeze–Thaw Cycling on the Soil-Freezing Characteristic Curve of Five Canadian Soils
,”
Vadose Zone Journal
19
, no. 
1
(May
2020
): e20039, https://doi.org/10.1002/vzj2.20039
119.
Yu
X.
and
Drnevich
V. P.
, “
Soil Water Content and Dry Density by Time Domain Reflectometry
,”
Journal of Geotechnical and Geoenvironmental Engineering
130
, no. 
9
(September
2004
):
922
934
, https://doi.org/10.1061/(ASCE)1090-0241(2004)130:9(922)
120.
Kawamura
S.
and
Miura
S.
, “
Rainfall-Induced Failures of Volcanic Slopes Subjected to Freezing and Thawing
,”
Soils and Foundations
53
, no. 
3
(June
2013
):
443
461
, https://doi.org/10.1016/j.sandf.2013.04.006
This content is only available via PDF.
You do not currently have access to this content.