Abstract

9Cr1Mo steels are widely used for high-temperature applications in thermal power plants, owing to their relatively high strengths and low costs. In the present study, thermodynamic calculations of equilibrium and nonequilibrium transformations are carried out by JMatPro software. In the equilibrium condition, the austenite transforms to ferrite with saturated amount of M23C6 carbides ((Cr,Fe)23C6) at a temperature lower than 600°C. By contrast, austenite-martensite transformation accompanied by precipitation of a lesser amount of M23C6 carbides occurs lower than 340°C under a certain cooling rate during the nonequilibrium process. Meanwhile, an experimental investigation on the effect of various cooling rates after austenization on the microstructure and hardness of austenitized and tempered steel has been presented. The experimental results are close to the calculated ones. As the cooling rate after austenization increases, the ferrite transformation turns into martensite transformation, which could be verified by the variations of hardness, phase compositions, precipitation behaviors and grain boundary characteristics.

References

1.
Abe
F.
, “
Progress in Creep-Resistant Steels for High Efficiency Coal-Fired Power Plants
,”
Journal of Pressure Vessel Technology
138
, no. 
4
(August
2016
): 040804, https://doi.org/10.1115/1.4032372
2.
Hald
J.
, “
Microstructure and Long-Term Creep Properties of 9–12% Cr Steels
,”
International Journal of Pressure Vessels and Piping
85
, nos. 
1–2
(January–February
2008
):
30
37
, https://doi.org/10.1016/j.ijpvp.2007.06.010
3.
Masuyama
F.
and
Shingledecker
J. P.
, “
Recent Status of ASMFE Code on Creep Strength Enhanced Ferritic Steels
,”
Procedia Engineering
55
(
2013
):
314
325
, https://doi.org/10.1016/j.proeng.2013.03.260
4.
Chandravathi
K. S.
,
Laha
K.
,
Bhanu Sankara Rao
K.
, and
Mannan
S. L.
, “
Microstructure and Tensile Properties of Modified 9Cr–1Mo Steel (Grade 91)
,”
Materials Science and Technology
17
, no. 
5
(
2001
):
559
565
, https://doi.org/10.1179/026708301101510212
5.
Totemeier
T. C.
,
Tian
H.
, and
Simpson
J. A.
, “
Effect of Normalization Temperature on the Creep Strength of Modified 9Cr-1Mo Steel
,”
Metallurgical and Materials Transactions A
37
, no. 
5
(May
2006
):
1519
1525
, https://doi.org/10.1007/s11661-006-0096-9
6.
Shrestha
T.
,
Alsagabi
S. F.
,
Charit
I.
,
Potirniche
G. P.
, and
Glazoff
M. V.
, “
Effect of Heat Treatment on Microstructure and Hardness of Grade 91 Steel
,”
Metals
5
, no. 
1
(January
2015
):
131
149
, https://doi.org/10.3390/met5010131
7.
Pandey
C.
,
Giri
A.
, and
Mahapatra
M. M.
, “
Evolution of Phases in P91 Steel in Various Heat Treatment Conditions and Their Effect on Microstructure Stability and Mechanical Properties
,”
Materials Science and Engineering: A
664
(May
2016
):
58
74
, https://doi.org/10.1016/j.msea.2016.03.132
8.
Paul
V. T.
,
Saroja
S.
, and
Vijayalakshmi
M.
, “
Microstructural Stability of Modified 9Cr–1Mo Steel during Long Term Exposures at Elevated Temperatures
,”
Journal of Nuclear Materials
378
, no. 
3
(September
2008
):
273
281
, https://doi.org/10.1016/j.jnucmat.2008.06.033
9.
Di Gianfrancesco
A.
,
Vipraio
S. T.
, and
Venditti
D.
, “
Long Term Microstructural Evolution of 9–12%Cr Steel Grades for Steam Power Generation Plants
,”
Procedia Engineering
55
(
2013
):
27
35
, https://doi.org/10.1016/j.proeng.2013.03.214
10.
Pandey
C.
and
Mahapatara
M. M.
, “
Effect of Long-Term Ageing on the Microstructure and Mechanical Properties of Creep Strength Enhanced Ferritic P91 Steel
,”
Transactions of the Indian Institute of Metals
69
(February
2016
):
1657
1673
, https://doi.org/10.1007/s12666-015-0826-z
11.
Baltušnikas
A.
,
Lukošiūtė
I.
,
Makarevičius
V.
,
Kriūkienė
R.
, and
Grybėnas
A.
, “
Influence of Thermal Exposure on Structural Changes of M23C6 Carbide in P91 Steel
,”
Journal of Materials Engineering and Performance
25
(March
2016
):
1945
1951
, https://doi.org/10.1007/s11665-016-2002-y
12.
Sawada
K.
,
Maruyama
K.
,
Komine
R.
, and
Nagae
Y.
, “
Microstructural Changes during Creep and Life Assessment of Mod. 9Cr-1Mo Steel
,”
Tetsu-to-Hagané
83
, no. 
7
(July
1997
):
466
471
, https://doi.org/10.2355/tetsutohagane1955.83.7_466
13.
Polcik
P.
,
Sailer
T.
,
Blum
W.
,
Straub
S.
,
Buršık
J.
, and
Orlová
A.
, “
On the Microstructural Development of the Tempered Martensitic Cr-Steel P 91 during Long-Term Creep—a Comparison of Data
,”
Materials Science and Engineering: A
260
, nos. 
1–2
(February
1999
):
252
259
, https://doi.org/10.1016/S0921-5093(98)00887-9
14.
Panait
C. G.
,
Bendick
W.
,
Fuchsmann
A.
,
Gourgues-Lorenzon
A.-F.
, and
Besson
J.
, “
Study of the Microstructure of the Grade 91 Steel after More than 100,000 h of Creep Exposure at 600 °C
,”
International Journal of Pressure Vessels and Piping
87
, no. 
6
(June
2010
):
326
335
, https://doi.org/10.1016/j.ijpvp.2010.03.017
15.
Panait
C. G.
,
Zielinska-Lipiec
A.
,
Koziel
T.
,
Czyrska-Filemonwicz
A.
,
Gourgues-Lorenzon
A. F.
, and
Bendick
W.
, “
Evolution of Dislocation Density, Size of Subgrains and MX-Type Precipitates in a P91 Steel during Creep and during Thermal Ageing at 600 °C for More than 100,000 h
,”
Materials Science and Engineering: A
527
, nos. 
16–17
(June
2010
):
4062
4069
, https://doi.org/10.1016/j.msea.2010.03.010
16.
Kabadwal
A.
,
Tamura
M.
,
Shinozuka
K.
, and
Esaka
H.
, “
Recovery and Precipitate Analysis of 9 Pct Cr–1 Pct MoVNb Steel during Creep
,”
Metallurgical and Materials Transactions A
41
(February
2010
):
364
379
, https://doi.org/10.1007/s11661-009-0094-9
17.
Zhang
X.
,
Zeng
Y.
,
Cai
W.
,
Wang
Z.
, and
Li
W.
, “
Study on the Softening Mechanism of P91 Steel
,”
Materials Science and Engineering: A
728
(June
2018
):
63
71
, https://doi.org/10.1016/j.msea.2018.04.082
18.
Kim
J. T.
,
Lee
Y. S.
,
Kong
B. O.
, and
Ryu
S. H.
, “
Thermal Histories Causing Low Hardness and the Minimum Hardness Requirement in a MOD.9Cr1Mo Steel for Boiler
,” in
Proceedings of ASME 2005 Pressure Vessels and Piping Conference (PVP 2005)
(
New York
:
The American Society of Mechanical Engineers
,
2008
),
123
128
, https://doi.org/10.1115/PVP2005-71255
19.
Guo
Z.
,
Saunders
N.
,
Schillé
J. P.
, and
Miodownik
A. P.
, “
Material Properties for Process Simulation
,”
Materials Science and Engineering: A
499
, nos. 
1–2
(January
2009
):
7
13
, https://doi.org/10.1016/j.msea.2007.09.097
20.
Shim
J.-H.
,
Hwang
B.
,
Lee
M.-G.
, and
Lee
J.
, “
‘Invited Paper’ Computer-Aided Alloy Designs of Grade 600 MPa Reinforced Steel Bars for Seismic Safety Based on Thermodynamic and Kinetic Calculations: Overview
,”
Calphad
62
(September
2018
):
67
74
, https://doi.org/10.1016/j.calphad.2018.05.005
21.
Prasad
B. S.
,
Rajkumar
V. B.
, and
Hari Kumar
K. C.
, “
Numerical Simulation of Precipitate Evolution in Ferritic–Martensitic Power Plant Steels
,”
Calphad
36
(March
2012
):
1
7
, https://doi.org/10.1016/j.calphad.2011.10.006
22.
Aghajani
A.
,
Somsen
C.
, and
Eggeler
G.
, “
On the Effect of Long-Term Creep on the Microstructure of a 12% Chromium Tempered Martensite Ferritic Steel
,”
Acta Materialia
57
, no. 
17
(October
2009
):
5093
5106
, https://doi.org/10.1016/j.actamat.2009.07.010
23.
Beladi
H.
and
Rohrer
G. S.
, “
The Role of Thermomechanical Routes on the Distribution of Grain Boundary and Interface Plane Orientations in Transformed Microstructures
,”
Metallurgical and Materials Transactions A
48
(
2017
):
2781
2790
, https://doi.org/10.1007/s11661-016-3630-4
24.
Hasegawa
Y.
,
Kumagai
H.
,
Kawazoe
F.
,
Okushima
M.
,
Furuya
H.
,
Kodama
M.
, and
Nagao
T.
, “
An Evaluation of High Temperature Hydrogen Attack Resistance and a Possible New Microstructure Development Based Remnant Life Assessment Method of a Clean ASME Gr. 91 Thick Section Steel Plate
,”
Materials at High Temperatures
34
, nos. 
5–6
(October
2017
):
473
481
, https://doi.org/10.1080/09603409.2017.1387440
25.
Schaffernak
B. C.
and
Cerjak
H. H.
, “
Design of Improved Heat Resistant Materials by Use of Computational Thermodynamics
,”
Calphad
25
, no. 
2
(June
2001
):
241
251
, https://doi.org/10.1016/S0364-5916(01)00046-3
This content is only available via PDF.
You do not currently have access to this content.