Abstract

High strength, extended fatigue life, and improvement in rutting resistance are the main advantages of using high modulus asphalt concrete as a base course material in the pavement structure. The primary goal of this paper was to investigate the performance properties of the high modulus base course using different asphaltenes-modified binders. A crude oil binder and two different asphalt binders from Alberta oil sands sources were used to prepare the mixtures. To prepare hard-grade asphalt binders, all binders were modified using asphaltenes, a waste byproduct of the deasphalting of Alberta oil sands. The performance grades of the modified and unmodified binders were determined, and a mix design was developed for the high modulus asphalt concrete mixes. To evaluate the performance properties of high modulus asphalt concrete mixes composed of unmodified and asphaltenes-modified binders, Hamburg wheel tracking, dynamic modulus and flow number, and indirect tensile strength at low temperature were conducted. The high-temperature performance test results, including Hamburg wheel tracking and flow number tests, indicated that asphaltenes-modified mixtures show higher resistance to permanent deformation. However, the indirect tensile strength test results at low temperature showed higher tensile strength and lower fracture energy for the asphaltenes-modified mixtures compared with the unmodified samples. Moreover, according to the dynamic modulus test results, the asphaltenes-modified mixtures exhibited higher modulus values (stiffness) than the unmodified samples at different loading frequencies compared with the unmodified samples.

References

1.
Chen
Y.
,
Wang
H.
,
Xu
S.
, and
You
Z.
, “
High Modulus Asphalt Concrete: A State-of-the-Art Review
,”
Construction and Building Materials
237
(March
2020
): 117653, https://doi.org/10.1016/j.conbuildmat.2019.117653
2.
Newcomb
D.
,
Buncher
M.
, and
Huddleston
I. J.
, “
Concepts of Perpetual Pavements
,”
Transportation Research Circular
503
(December
2001
):
4
11
.
3.
Picado-Santos
L.
,
Capitão
S.
, and
Pais
J.
, “
Stiffness Modulus and Phase Angle Prediction Models for High Modulus Asphalt Concrete
,”
International Journal of Pavements
2
, no. 
3
(
2003
):
37
49
.
4.
Zheng
M.
,
Li
P.
,
Yang
J.
,
Li
H.
,
Qiu
Y.
, and
Zhang
Z.
, “
Fatigue Character Comparison between High Modulus Asphalt Concrete and Matrix Asphalt Concrete
,”
Construction and Building Materials
206
(May
2019
):
655
664
, https://doi.org/10.1016/J.CONBUILDMAT.2019.01.170
5.
Si
C.
,
Cao
H.
,
Chen
E.
,
You
Z.
,
Tian
R.
,
Zhang
R.
, and
Gao
J.
, “
Dynamic Response Analysis of Rutting Resistance Performance of High Modulus Asphalt Concrete Pavement
,”
Applied Sciences
8
, no. 
12
(December
2018
): 2701, https://doi.org/10.3390/APP8122701
6.
Judycki
J.
,
Jaskula
P.
,
Dolzycki
B.
,
Pszczola
M.
,
Jaczewski
M.
,
Rys
D.
, and
Stienss
M.
, “
Investigation of Low-Temperature Cracking in Newly Constructed High-Modulus Asphalt Concrete Base Course of a Motorway Pavement
,”
Road Materials and Pavement Design
16
, no. 
S1
(April
2015
):
362
388
, https://doi.org/10.1080/14680629.2015.1029674
7.
Lee
H. J.
,
Park
H. M.
, and
Lee
J. H.
, “
Development of a Simplified Design Procedure for Determining Layer Thickness in Long-Life Pavements
,”
Transportation Research Record
2037
, no. 
1
(January
2007
):
76
85
, https://doi.org/10.3141/2037-07
8.
Nunn
M. E.
,
Brown
A.
,
Weston
D.
, and
Nicholls
J. C.
,
Design of Long-Life Flexible Pavements for Heavy Traffic, TRL Report 250
(Wokingham, UK:
Transportation Research Library
,
1997
).
9.
Geng
H.
,
Clopotel
C. S.
, and
Bahia
H. U.
, “
Effects of High Modulus Asphalt Binders on Performance of Typical Asphalt Pavement Structures
,”
Construction and Building Materials
44
(July
2013
):
207
213
, https://doi.org/10.1016/J.CONBUILDMAT.2013.03.035
10.
Denneman
E.
,
Petho
L.
,
Verhaeghe
B. M.
,
Komba
J. J.
,
Steyn
W.
,
Vos
R.
,
Distin
T.
,
Myburgh
P.
,
Beecroft
A.
, and
Griffin
J.
, “
High Modulus Asphalt (EME) Technology Transfer to South Africa and Australia: Shared Experiences
” (paper presentation, 11th Conference on Asphalt Pavements for Southern Africa, Sun City, South Africa, August 16–19,
2015
).
11.
Wang
C.
,
Wang
H.
,
Zhao
L.
, and
Cao
D.
, “
Experimental Study on Rheological Characteristics and Performance of High Modulus Asphalt Binder with Different Modifiers
,”
Construction and Building Materials
155
(November
2017
):
26
36
, https://doi.org/10.1016/J.CONBUILDMAT.2017.08.058
12.
Corte
J.-F.
, “
Development and Uses of Hard-Grade Asphalt and of High-Modulus Asphalt Mixes in France
,”
Transportation Research Circular
, no. 
503
(December
2001
):
12
31
.
13.
Judycki
J.
,
Jaczewski
M.
,
Ryś
D.
,
Pszczoła
M.
,
Jaskuła
P.
, and
Glinicki
A.
, “
Field Investigation of Low-Temperature Cracking and Stiffness Moduli on Selected Roads with Conventional and High Modulus Asphalt Concrete
,” in
Building Up Efficient and Sustainable Transport Infrastructure (BESTInfra 2017)
, vol.
236
(
Bristol, UK
:
Institute of Physics Publishing
,
2017
), 012002.
14.
Vervaecke
F.
and
Vanelstraete
A.
, “
Resistance to Low Temperature Cracking of High Modulus Bituminous Binders and Mixtures
,”
Road Materials and Pavement Design
9
, no. 
S1
(September
2008
):
163
176
, https://doi.org/10.1080/14680629.2008.9690164
15.
Hua-jie
C. U. I.
,
Li-han
L. I.
, and
Dong
L. I. U.
, “
Research on Low-Temperature Anti-crack Performance of High Modulus Asphalt Mixture
,”
Journal of Highway and Transportation Research and Development
31
, no. 
2
(
2014
):
37
41
.
16.
Zou
X.
,
Sha
A.
,
Jiang
W.
, and
Liu
Z.
, “
Effects of Modifier Content on High-Modulus Asphalt Mixture and Prediction of Fatigue Property Using Weibull Theory
,”
Road Materials and Pavement Design
18
, no. 
S3
(May
2017
):
88
96
, https://doi.org/10.1080/14680629.2017.1329864
17.
Ranieri
M.
and
Celauro
C.
, “
Improvement of High Modulus Asphalt Mixtures with Average Quality Aggregate and Bitumen by Application of Polymeric Additives
,”
Construction and Building Materials
178
(July
2018
):
183
194
, https://doi.org/10.1016/J.CONBUILDMAT.2018.05.126
18.
Vacková
P.
,
Valentin
J.
,
Mondschein
P.
, and
Soukupová
L.
, “
Effect of Additive Bitumious Binders on a New Generation of High Modulus Asphalt Mixtures
,” in
Fourth Geo-China International Conference
(
Reston, VA
:
American Society of Civil Engineers
,
2016
),
196
204
, https://doi.org/10.1061/9780784480052.024
19.
Behnood
A.
and
Gharehveran
M. M.
, “
Morphology, Rheology, and Physical Properties of Polymer-Modified Asphalt Binders
,”
European Polymer Journal
112
(March
2019
):
766
791
, https://doi.org/10.1016/j.eurpolymj.2018.10.049
20.
Ren
S.
,
Liu
X.
,
Fan
W.
,
Wang
H.
, and
Erkens
S.
, “
Rheological Properties, Compatibility, and Storage Stability of SBS Latex-Modified Asphalt
,”
Materials
12
, no. 
22
(November
2019
): 3683, https://doi.org/10.3390/MA12223683
21.
Moreno-Navarro
F.
,
Sol-Sánchez
M.
,
Rubio-Gámez
M. C.
, and
Segarra-Martínez
M.
, “
The Use of Additives for the Improvement of the Mechanical Behavior of High Modulus Asphalt Mixes
,”
Construction and Building Materials
70
(November
2014
):
65
70
, https://doi.org/10.1016/J.CONBUILDMAT.2014.07.115
22.
Polacco
G.
,
Filippi
S.
,
Merusi
F.
, and
Stastna
G.
, “
A Review of the Fundamentals of Polymer-Modified Asphalts: Asphalt/Polymer Interactions and Principles of Compatibility
,”
Advances in Colloid and Interface Science
224
(October
2015
):
72
112
, https://doi.org/10.1016/J.CIS.2015.07.010
23.
Zhu
J.
,
Birgisson
B.
, and
Kringos
N.
, “
Polymer Modification of Bitumen: Advances and Challenges
,”
European Polymer Journal
54
, no. 
1
(May
2014
):
18
38
, https://doi.org/10.1016/j.eurpolymj.2014.02.005
24.
Yan
J.
,
Leng
Z.
,
Ling
C.
,
Zhu
J.
, and
Zhou
L.
, “
Characterization and Comparison of High-Modulus Asphalt Mixtures Produced with Different Methods
,”
Construction and Building Materials
237
(March
2020
): 117594, https://doi.org/10.1016/J.CONBUILDMAT.2019.117594
25.
Delorme
J.-L.
,
De la Roche
C.
, and
Wendling
L.
,
LPC Bituminous Mixtures Design Guide
(
Paris
:
Laboratoire Central Des Ponts et Chaussées
,
2007
).
26.
Meisen
A.
,
Bitumen Beyond Combustion (BBC) Project, Phase 1 Report
(
Edmonton, Canada
:
Alberta Innovates
,
2017
).
27.
Fakher
S.
,
Ahdaya
M.
,
Elturki
M.
, and
Imqam
A.
, “
Critical Review of Asphaltene Properties and Factors Impacting Its Stability in Crude Oil
,”
Journal of Petroleum Exploration and Production Technology
10
, no. 
3
(March
2019
):
1183
1200
, https://doi.org/10.1007/S13202-019-00811-5
28.
Azizian
S.
and
Khosravi
M.
, “
Chapter 12–Advanced Oil Spill Decontamination Techniques
,”
Interface Science and Technology
30
(
2019
):
283
332
, https://doi.org/10.1016/B978-0-12-814178-6.00012-1
29.
Ashtari
M.
, “
New Pathways for Asphaltenes Upgrading via Oxy-cracking in Liquid Phase
” (PhD diss.,
University of Calgary
,
2016
).
30.
Sultana
S.
and
Bhasin
A.
, “
Effect of Chemical Composition on Rheology and Mechanical Properties of Asphalt Binder
,”
Construction and Building Materials
72
(December
2014
):
293
300
, https://doi.org/10.1016/j.conbuildmat.2014.09.022
31.
Ramirez-Corredores
M. M.
,
The Science and Technology of Unconventional Oils: Finding Refining Opportunities
(Cambridge, MA:
Academic Press
,
2017
).
32.
Xu
Y.
,
Zhang
E.
, and
Shan
L.
, “
Effect of SARA on Rheological Properties of Asphalt Binders
,”
Journal of Materials in Civil Engineering
31
, no. 
6
(June
2019
): 04019086, https://doi.org/10.1061/(ASCE)mt.1943-5533.0002723
33.
Eberhardsteiner
L.
,
Füssl
J.
,
Hofko
B.
,
Handle
F.
,
Hospodka
M.
,
Blab
R.
, and
Grothe
H.
, “
Influence of Asphaltene Content on Mechanical Bitumen Behavior: Experimental Investigation and Micromechanical Modeling
,”
Materials and Structures
48
, no. 
10
(October
2015
):
3099
3112
, https://doi.org/10.1617/S11527-014-0383-7
34.
Hofko
B.
,
Eberhardsteiner
L.
,
Füssl
J.
,
Grothe
H.
,
Handle
F.
,
Hospodka
M.
,
Grossegger
D.
,
Nahar
S. N.
,
Schmets
A. J. M.
, and
Scarpas
A.
, “
Impact of Maltene and Asphaltene Fraction on Mechanical Behavior and Microstructure of Bitumen
,”
Materials and Structures
49
, no. 
3
(January
2015
):
829
841
, https://doi.org/10.1617/s11527-015-0541-6
35.
Zhu
J.
,
Ma
T.
,
Fan
J.
,
Fang
Z.
,
Chen
T.
, and
Zhou
Y.
, “
Experimental Study of High Modulus Asphalt Mixture Containing Reclaimed Asphalt Pavement
,”
Journal of Cleaner Production
263
(August
2020
): 121447.
36.
Ding
X.
,
Chen
L.
,
Ma
T.
,
Ma
H.
,
Gu
L.
,
Chen
T.
, and
Ma
Y.
, “
Laboratory Investigation of the Recycled Asphalt Concrete with Stable Crumb Rubber Asphalt Binder
,”
Construction and Building Materials
203
(April
2019
):
552
557
.
37.
Varanda
C.
,
Portugal
I.
,
Ribeiro
J.
,
Silva
A. M. S.
, and
Silva
C. M.
, “
Influence of Polyphosphoric Acid on the Consistency and Composition of Formulated Bitumen: Standard Characterization and NMR Insights
,”
Journal of Analytical Methods in Chemistry
2016 (August
2016
): 2915467, https://doi.org/10.1155/2016/2915467
38.
Firoozifar
S. H.
,
Foroutan
S.
, and
Foroutan
S.
, “
The Effect of Asphaltene on Thermal Properties of Bitumen
,”
Chemical Engineering Research and Design
89
, no. 
10
(October
2011
):
2044
2048
, https://doi.org/10.1016/J.CHERD.2011.01.025
39.
Leiva-Villacorta
F.
,
Taylor
A.
, and
Willis
R.
,
High-Modulus Asphalt Concrete (HMAC) Mixtures for Use as Base Course, NCAT Report 17-04
(
Auburn, AL
:
National Center for Asphalt Technology
,
2017
).
40.
Oil
H.
,
Specifications and Typical Analyses of an Asphalt Cement 80/100 A PEN Used in the Construction of Pavements
(
Edmonton, Canada
:
Husky Oil
,
2018
).
41.
Speight
J. G.
, “
Petroleum Asphaltenes–Part 1: Asphaltenes, Resins and the Structure of Petroleum
,”
Oil & Gas Science and Technology
59
, no. 
5
(September–October
2004
):
467
477
, https://doi.org/10.2516/ogst:2004032
42.
Ghasemirad
A.
, “
Asphaltenes-Modified Binders for High Modulus Asphalt Concrete Applications
” (master’s thesis,
University of Alberta
,
2020
).
43.
Standard Method of Test for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR)
, AASHTO T 315-19 (
Washington, DC
:
American Association of State Highway and Transportation Officials
,
2001
).
44.
Standard Method of Test for Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR)
, AASHTO T 313-19 (
Washington, DC
:
American Association of State Highway and Transportation Officials
,
2019
).
45.
Wang
C.
,
Wang
H.
,
Zhao
L.
, and
Cao
D.
, “
Experimental Study on Rheological Characteristics and Performance of High Modulus Asphalt Binder with Different Modifiers
,”
Construction and Building Materials
155
(November
2017
):
26
36
.
46.
Moghaddam
T. B.
and
Baaj
H.
, “
The Use of Compressible Packing Model and Modified Asphalt Binders in High-Modulus Asphalt Mix Design
,”
Road Materials and Pavement Design
21
, no. 
4
(October
2018
):
1061
1077
, https://doi.org/10.1080/14680629.2018.1536611
47.
Ghasemirad
A.
,
Bala
N.
,
Hashemian
L.
, and
Bayat
A.
, “
Asphaltenes-Modified Binders for High Modulus Asphalt Concrete Applications
” (paper presentation, 100th Annual Meeting of the Transportation Research Board, Washington, DC, January
2021
).
48.
Standard Method of Test for Determining the Dynamic Modulus and Flow Number for Asphalt Mixtures Using the Asphalt Mixture Performance Tester (AMPT)
, AASHTO T 378 (
Washington, DC
:
American Association of State Highway and Transportation Officials
,
2013
).
49.
Standard Method of Test for Determining the Dynamic Modulus of Hot Mix Asphalt (HMA)
, AASHTO T 342 (
Washington, DC
:
American Association of State Highway and Transportation Officials
,
2019
).
50.
Standard Practice for Developing Dynamic Modulus Master Curves for Asphalt Mixtures Using the Asphalt Mixture Performance Tester (AMPT)
, AASTHO R 84-17 (
Washington, DC
:
American Association of State Highway and Transportation Officials
,
2020
).
51.
Standard Method of Test Determining the Creep Compliance and Strength of Hot Mix Asphalt (HMA) Using the Indirect Tensile Test Device
, AASTHO T 322 (
Washington, DC
:
American Association of State Highway and Transportation Officials
,
2007
).
52.
Standard Test Method for Determination of Cracking Tolerance Index of Asphalt Mixture Using the Indirect Tensile Cracking Test at Intermediate Temperature
, ASTM D8225-19 (
West Conshohocken, PA
:
ASTM International
, approved April 1,
2019
), https://doi.org/10.1520/D8225-19
53.
Standard Method of Test for Hamburg Wheel-Track Testing of Compacted Asphalt Mixtures
, AASHTO T 324-19 (
Washington, DC
:
American Association of State Highway and Transportation Officials
,
2020
).
54.
Beecroft
A.
and
Petho
L.
,
P3 Commissioning of Hamburg Wheel Tracking Device (HWDT), Final Rep. Project No. 007180
(Port Melbourne, Australia:
AARB Group Ltd.
,
2015
).
55.
Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate
, ASTM C128-15 (
West Conshohocken, PA
:
ASTM International
, approved January 1,
2015
), https://doi.org/10.1520/C0128-15
56.
Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate
, ASTM C127-15 (
West Conshohocken, PA
:
ASTM International
, approved January 1,
2015
), https://doi.org/10.1520/C0127-15
57.
Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine
, ASTM C131/C131M-20 (
West Conshohocken, PA
:
ASTM International
, approved February 15,
2020
), https://doi.org/10.1520/C0131_C0131M-20
58.
Standard Test Method for Specific Gravity and Density of Semi-solid Asphalt Binder (Pycnometer Method)
, ASTM D70/D70M-21 (
West Conshohocken, PA
:
ASTM International
, approved January 1,
2021
), https://doi.org/10.1520/D0070_D0070M-21
59.
Standard Test Method for Penetration of Bituminous Materials
, ASTM D5/D5M-20 (
West Conshohocken, PA
:
ASTM International
, approved May 1,
2020
), https://doi.org/10.1520/D0005_D0005M-20
60.
Standard Test Method for Flash and Fire Points by Cleveland Open Cup Tester
, ASTM D92-18 (West Conshohocken, PA:
ASTM International
, approved July 1,
2018
), https://doi.org/10.1520/D0092-18
61.
Standard Test Method for Ductility of Asphalt Materials
, ASTM D113-17 (
West Conshohocken, PA
:
ASTM International
, approved December 15,
2017
), https://doi.org/10.1520/D0113-17
62.
Standard Test Method for Solubility of Asphalt Materials in Trichloroethylene
, ASTM D2042-22 (
West Conshohocken, PA
:
ASTM International
, approved January 1,
2022
), https://doi.org/10.1520/D2042-22
63.
Standard Test Method for Viscosity of Asphalts by Vacuum Capillary Viscometer
, ASTM D2171/D2171M-18 (
West Conshohocken, PA
:
ASTM International
, approved December 15,
2018
), https://doi.org/10.1520/D2171_D2171M-18
64.
Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer
, ASTM D4402/D4402M-15 (
West Conshohocken, PA
:
ASTM International
, approved May 1,
2022
), https://doi.org/10.1520/D4402_D4402M-15R22
65.
Standard Test Method for Effects of Heat and Air on Asphaltic Materials (Thin-Film Oven Test)
, ASTM D1754-97 (
West Conshohocken, PA
:
ASTM International
, approved November 1,
2020
), https://doi.org/10.1520/D1754-97R02
This content is only available via PDF.
You do not currently have access to this content.