Abstract

To study the effect of uniaxial compression on coal nanostructure during uniaxial compression, in situ synchrotron radiation small angle X-ray scattering experiments were carried out on four coals with different ranks under uniaxial compression. According to the scattering data during the uniaxial compression process, the fractal characteristics and the variation feature of fractal dimension with stress were obtained. Four coals with different ranks all possess two fractal characteristics: pore fractal occur in the smaller pore range (7–17 nm) in the high q value range, and surface fractal occur in the larger pore range (17–52 nm) in the low q value range. For two low rank coals, with increasing stress, the pore fractal dimension DP decreased and the surface fractal dimension DS increased, respectively; the variation trends of DP and DS were obvious. This indicates that with increasing stress, the heterogeneity and complexity of the pores decrease, the surface roughness of the pores increases, and stress has a significant effect on the nanopore structure. The smaller pores are more susceptible to stress, and the influence range of stress on low rank coals is larger than that on high rank coals. The change rate of fractal dimension (RD) has a poor relationship with compressibility during uniaxial loading and is related to coal rank. The RD per unit stress for high rank coals is larger than that for low rank coals. Nanostructure response to uniaxial compressive stress is more significant in low rank coals than in high rank coals. Compared with low rank coals, high rank coals have strong aromatization and molecular structure, and the nanostructures are less susceptible to failure under uniaxial stress.

References

1.
Cai
Y.
,
Liu
D.
,
Pan
Z.
,
Yao
Y.
,
Li
J.
, and
Qiu
Y.
, “
Pore Structure of Selected Chinese Coals with Heating and Pressurization Treatments
,”
Science China Earth Sciences
57
, no. 
7
(July
2014
):
1564
1582
, https://doi.org/10.1007/s11430-014-4855-y
2.
Liang
W.-G.
,
Zhang
B.-N.
,
Han
J.-J.
, and
Wu
D.
, “
Experimental Study on Coal Bed Methane Displacement and Recovery by Super Critical Carbon Dioxide Injection
,”
Journal of China Coal Society
39
, no. 
8
(August
2014
):
1511
1520
, https://doi.org/10.13225/j.cnki.jccs.2014.9012
3.
Clarkson
C. R.
and
Bustin
R. M.
, “
Binary Gas Adsorption/Desorption Isotherms: Effect of Moisture and Coal Composition upon Carbon Dioxide Selectivity over Methane
,”
International Journal of Coal Geology
42
, no. 
4
(March
2000
):
241
271
, https://doi.org/10.1016/S0166-5162(99)00032-4
4.
Fu
X.
,
Qin
Y.
,
Zhang
W.
,
Wei
C.
, and
Zhou
R.
, “
Fractal Classification and Natural Classification of Coal Porosity Based on CBM Migration
,”
Chinese Science Bulletin
50
, no. 
1
(January
2005
):
66
71
, https://doi.org/10.1007/bf03184085
5.
Liu
G.
,
Zhang
Z.
,
Zhang
X.
, and
Lu
R.
, “
Pore Distribution Regularity and Absorption-Desorption Characteristics of Gas Coal and Coking Coal
,”
Chinese Journal of Rock Mechanics and Engineering
28
, no. 
8
(August
2009
):
1587
1592
.
6.
Yao
Y.-B.
and
Liu
D.-M.
, “
Developing Features of Fissure System in Henan Coal Reserves Seams and Research on Mining of Coalbed Methane
,”
Coal Science and Technology
34
, no. 
3
(
2006
):
64
68
, https://doi.org/10.13199/j.cst.2006.03.68.yaoyb.021
7.
Zhou
S.
,
Liu
D.
,
Cai
Y.
, and
Yao
Y.
, “
Fractal Characterization of Pore-Fracture in Low-Rank Coals Using a Low-Field NMR Relaxation Method
,”
Fuel
181
(October
2016
):
218
226
, https://doi.org/10.1016/j.fuel.2016.04.119
8.
Durucan
S.
,
Ahsanb
M.
, and
Shi
J.-Q.
, “
Matrix Shrinkage and Swelling Characteristics of European Coals
,”
Energy Procedia
1
, no. 
1
(February
2009
):
3055
3062
, https://doi.org/10.1016/j.egypro.2009.02.084
9.
Crosdale
P. J.
,
Moore
T. A.
, and
Mares
T. E.
, “
Influence of Moisture Content and Temperature on Methane Adsorption Isotherm Analysis for Coals from a Low-Rank, Biogenically-Sourced Gas Reservoir
,”
International Journal of Coal Geology
76
, nos. 
1–2
(October
2008
):
166
174
, https://doi.org/10.1016/j.coal.2008.04.004
10.
Liu
A.
,
Liu
S.
,
Liu
P.
, and
Wang
K.
, “
Water Sorption on Coal: Effects of Oxygen-Containing Function Groups and Pore Structure
,”
International Journal of Coal Science & Technology
8
, no. 
5
(October
2021
):
983
1002
, https://doi.org/10.1007/s40789-021-00424-6
11.
Sun
Y.
,
Zhao
Y.
, and
Yuan
L.
, “
CO2-ECBM in Coal Nanostructure: Modelling and Simulation
,”
Journal of Natural Gas Science and Engineering
54
(June
2018
):
202
215
, https://doi.org/10.1016/j.jngse.2018.04.007
12.
Liu
Y.
,
Kang
J.
,
Zhou
F.
,
Fan
Y.
, and
Li
H.
, “
Effects of Maceral Compositions of Coal on Methane Adsorption Heat
,”
Geofluids
2018
(
2018
): 7596138, https://doi.org/10.1155/2018/7596138
13.
Blach
T.
,
Radlinski
A. P.
,
Vu
P.
,
Ji
Y.
,
de Campo
L.
,
Gilbert
E. P.
,
Regenauer-Lieb
K.
, and
Mastalerz
M.
, “
Deformation of Pores in Response to Uniaxial and Hydrostatic Stress Cycling in Marcellus Shale: Implications for Gas Recovery
,”
International Journal of Coal Geology
248
(December
2021
): 103867, https://doi.org/10.1016/j.coal.2021.103867
14.
He
X.
,
Cheng
Y.
,
Hu
B.
,
Wang
Z.
,
Wang
C.
,
Yi
M.
, and
Wang
L.
, “
Effects of Coal Pore Structure on Methane-Coal Sorption Hysteresis: An Experimental Investigation Based on Fractal Analysis and Hysteresis Evaluation
,”
Fuel
269
(June
2020
): 117438, https://doi.org/10.1016/j.fuel.2020.117438
15.
Yang
Y.
,
Liu
S.
,
Zhao
W.
, and
Wang
L.
, “
Intrinsic Relationship between Langmuir Sorption Volume and Pressure for Coal: Experimental and Thermodynamic Modeling Study
,”
Fuel
241
(April
2019
):
105
117
, https://doi.org/10.1016/j.fuel.2018.12.008
16.
Li
Z.
,
Lin
B.
,
Gao
Y.
,
Cao
Z.
,
Cheng
Y.
, and
Yu
J.
, “
Fractal Analysis of Pore Characteristics and Their Impacts on Methane Adsorption of Coals from Northern China
,”
International Journal of Oil, Gas and Coal Technology
10
, no. 
3
(
2015
):
306
324
, https://doi.org/10.1504/IJOGCT.2015.071507
17.
Wang
B.
,
Qin
Y.
,
Shen
J.
,
Zhang
Q.
, and
Wang
G.
, “
Pore Structure Characteristics of Low- and Medium-Rank Coals and Their Differential Adsorption and Desorption Effects
,”
Journal of Petroleum Science and Engineering
165
(June
2018
):
1
12
, https://doi.org/10.1016/j.petrol.2018.02.014
18.
Xie
H.
and
Zhou
H. W.
, “
Application of Fractal Theory to Top-Coal Caving
,”
Chaos, Solitons & Fractals
36
, no. 
4
(May
2008
):
797
807
, https://doi.org/10.1016/j.chaos.2006.07.024
19.
Zhao
C.
,
Zhang
R.
,
Zhao
C.
,
Wang
W.
, and
Wang
Y.
, “
A Three-Dimensional Evaluation of Interface Shear Behavior between Granular Material and Rough Surface
,”
Journal of Testing and Evaluation
49
, no. 
2
(March
2021
):
713
727
, https://doi.org/10.1520/JTE20180749
20.
Pyun
S.-I.
and
Rhee
C.-K.
, “
An Investigation of Fractal Characteristics of Mesoporous Carbon Electrodes with Various Pore Structures
,”
Electrochimica Acta
49
, no. 
24
(September
2004
):
4171
4180
, https://doi.org/10.1016/j.electacta.2004.04.012
21.
Pan
J.
,
Zhu
H.
,
Hou
Q.
,
Wang
H.
, and
Wang
S.
, “
Macromolecular and Pore Structures of Chinese Tectonically Deformed Coal Studied by Atomic Force Microscopy
,”
Fuel
139
(January
2015
):
94
101
, https://doi.org/10.1016/j.fuel.2014.08.039
22.
Peng
R.-D.
,
Xie
H.-P.
, and
Ju
Y.
, “
Computation Method of Fractal Dimension for 2-D Digital Image
,”
Journal of China University of Mining and Technology
33
, no. 
1
(January
2004
):
22
27
.
23.
Liu
Y.
,
Zhu
Y.
,
Wang
Y.
, and
Chen
S.
, “
Fractal Characteristics of Nanoscale Pores in Shale and Its Implications on Methane Adsorption Capacity
,”
Fractals
27
, no. 
1
(February
2019
): 1940014, https://doi.org/10.1142/S0218348X19400140
24.
Li
Z.-W.
,
Hao
Z.-Y.
,
Pang
Y.
, and
Gao
Y.-B.
, “
Fractal Dimensions of Coal and Their Influence on Methane Adsorption
,”
Journal of China Coal Society
40
, no. 
4
(
2015
):
863
869
, https://doi.org/10.13225/j.cnki.jccs.2014.3022
25.
Zhai
C.
,
Qin
L.
,
Liu
S.
,
Xu
J.
,
Tang
Z.
, and
Wu
S.
, “
Pore Structure in Coal: Pore Evolution after Cryogenic Freezing with Cyclic Liquid Nitrogen Injection and Its Implication on Coalbed Methane Extraction
,”
Energy Fuels
30
, no. 
7
(July
2016
):
6009
6020
, https://doi.org/10.1021/acs.energyfuels.6b00920
26.
Zhao
Y.
and
Peng
L.
, “
Investigation on the Size and Fractal Dimension of Nano-Pore in Coals by Synchrotron Small Angle X-ray Scattering
,”
Chinese Science Bulletin
62
, no. 
21
(
2017
):
2416
2427
, https://doi.org/10.1360/N972016-00970
27.
Sastry
P. U.
,
Sen
D.
,
Mazumder
S.
, and
Chandrasekaran
K. S.
, “
Structural Variations in Lignite Coal: A Small Angle X-ray Scattering Investigation
,”
Solid State Communications
114
, no. 
6
(April
2000
):
329
333
, https://doi.org/10.1016/S0038-1098(00)00060-0
28.
Radlinski
A. P.
,
Mastalerz
M.
,
Hinde
A. L.
,
Hainbuchner
M.
,
Rauch
H.
,
Baron
M.
,
Lin
J. S.
,
Fan
L.
, and
Thiyagarajan
P.
, “
Application of SAXS and SANS in Evaluation of Porosity, Pore Size Distribution and Surface Area of Coal
,”
International Journal of Coal Geology
59
, nos. 
3–4
(August
2004
):
245
271
, https://doi.org/10.1016/j.coal.2004.03.002
29.
Diduszko
R.
,
Swiatkowski
A.
, and
Trznadel
B. J.
, “
On Surface of Micropores and Fractal Dimension of Activated Carbon Determined on the Basis of Adsorption and SAXS Investigations
,”
Carbon
38
, no. 
8
(
2000
):
1153
1162
, https://doi.org/10.1016/S0008-6223(99)00236-5
30.
Niu
Q.
,
Pan
J.
,
Jin
Y.
,
Wang
H.
,
Li
M.
,
Ji
Z.
,
Wang
K.
, and
Wang
Z.
, “
Fractal Study of Adsorption-Pores in Pulverized Coals with Various Metamorphism Degrees Using N2 Adsorption, X-ray Scattering and Image Analysis Methods
,”
Journal of Petroleum Science and Engineering
176
(May
2019
):
584
593
, https://doi.org/10.1016/j.petrol.2019.01.107
31.
Wang
Y.
,
Zhang
T.
,
Jing
L.
,
Deng
P.
,
Zhao
S.
, and
Guan
D.
, “
Exploring Natural Palm Fiber’s Mechanical Performance Using Multi-scale Fractal Structure Simulation
,”
BioResources
15
, no. 
3
(August
2020
):
5787
5800
, https://doi.org/10.15376/biores.15.3.5787-5800
32.
Liu
D.
,
Pallon
L. K. H.
,
Pourrahimi
A. M.
,
Zhang
P.
,
Diaz
A.
,
Holler
M.
,
Schneider
K.
,
Olsson
R. T.
,
Hedenqvist
M. S.
,
Yu
S.
, and
Gedde
U. W.
, “
Cavitation in Strained Polyethylene/Aluminium Oxide Nanocomposites
,”
European Polymer Journal
87
(February
2017
):
255
265
, https://doi.org/10.1016/j.eurpolymj.2016.12.021
33.
Wang
W.
,
Murthy
N. S.
,
Chae
H. G.
, and
Kumar
S.
, “
Small-Angle X-ray Scattering Investigation of Carbon Nanotube-Reinforced Polyacrylonitrile Fibers during Deformation
,”
Journal of Polymer Science Part B: Polymer Physics
47
, no. 
23
(December
2009
):
2394
2409
, https://doi.org/10.1002/polb.21836
34.
Balima
F.
,
Pischedda
V.
,
Le Floch
S.
,
Brûlet
A.
,
Lindner
P.
,
Duclaux
L.
, and
San-Miguel
A.
, “
An In Situ Small Angle Neutron Scattering Study of Expanded Graphite under a Uniaxial Stress
,”
Carbon
57
(June
2013
):
460
469
, https://doi.org/10.1016/j.carbon.2013.02.019
35.
Cherny
A. Y.
,
Anitas
E. M.
,
Kuklin
A. I.
,
Balasoiu
M.
, and
Osipov
V. A.
, “
Small-Angle Scattering from the Deterministic Fractal Systems
,”
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques
4
, no. 
6
(November
2010
):
903
907
, https://doi.org/10.1134/S1027451010060054
36.
Li
W.-H.
,
Bai
X.-F.
,
Yang
J.-H.
,
Chen
W.-M.
, and
Ma
W.-W.
, “
Correspondence between Mean Maximum Reflectance of Vitrinite and Classification of Bituminous Coals
,”
Journal of Chin Coal Society
31
, no. 
3
(June
2006
):
342
345
.
37.
Li
Z.
,
Wu
Z.
,
Mo
G.
,
Xing
X.
, and
Liu
P.
, “
A Small-Angle X-ray Scattering Station at Beijing Synchrotron Radiation Facility
,”
Instrumentation Science & Technology
42
, no. 
2
(March
2014
):
128
141
, https://doi.org/10.1080/10739149.2013.845845
38.
Hammersley
A. P.
, “
FIT2D: A Multi-purpose Data Reduction, Analysis and Visualization Program
,”
Journal of Applied Crystallography
49
, no. 
2
(April
2016
):
646
652
, https://doi.org/10.1107/S1600576716000455
39.
Li
Z.-H.
, “
A Program for SAXS Data Processing and Analysis
,”
Chinese Physics C
37
, no. 
10
(October
2013
): 108002, https://doi.org/10.1088/1674-1137/37/10/108002
40.
Vollet
D. R.
,
Donatti
D. A.
, and
Ibañez Ruiz
A.
, “
Comparative Study Using Small-Angle X-ray Scattering and Nitrogen Adsorption in the Characterization of Silica Xerogels and Aerogels
,”
Physical Review B
69
, no. 
6
(February
2004
): 064202, https://doi.org/10.1103/PhysRevB.69.064202
41.
Zhou
S.
,
Liu
D.
,
Cai
Y.
,
Yao
Y.
,
Jiao
Y.
, and
Ren
S.
, “
Characterization and Fractal Nature of Adsorption Pores in Low Rank Coal
,”
Oil & Gas Geology
39
, no. 
2
(
2018
):
373
383
.
42.
Zhao
P.
,
Wang
Z.
,
Sun
Z.
,
Cai
J.
, and
Wang
L.
, “
Investigation on the Pore Structure and Multifractal Characteristics of Tight Oil Reservoirs Using NMR Measurements: Permian Lucaogou Formation in Jimusaer Sag, Junggar Basin
,”
Marine and Petroleum Geology
86
(September
2017
):
1067
1081
, https://doi.org/10.1016/j.marpetgeo.2017.07.011
43.
Cai
J.-C.
,
Yu
B.-M.
,
Zou
M.-Q.
, and
Mei
M.-F.
, “
Fractal Analysis of Surface Roughness of Particles in Porous Media
,”
Chinese Physics Letters
27
, no. 
2
(February
2010
): 024705, https://doi.org/10.1088/0256-307X/27/2/024705
44.
Radlinski
A. P.
,
Blach
T.
,
Vu
P.
,
Ji
Y.
,
de Campo
L.
,
Gilbert
E. P.
,
Regenauer-Lieb
K.
, and
Mastalerz
M.
, “
Pore Accessibility and Trapping of Methane in Marcellus Shale
,”
International Journal of Coal Geology
248
(December
2021
): 103850, https://doi.org/10.1016/j.coal.2021.103850
45.
Mathews
J. P.
and
Chaffee
A. L.
, “
The Molecular Representations of Coal – A Review
,”
Fuel
96
, no. 
1
(June
2012
):
1
14
, https://doi.org/10.1016/j.fuel.2011.11.025
46.
Wang
Y.
,
Zhang
Y.-G.
, and
Xu
X.-K.
, “
Relationship between the Maximum Vitrinite Reflectance and the Elastic Parameters of Coal: A Lab Ultrasonic Measurement of 6 Metamorphic Kinds of Coals
,”
Chinese Journal of Geophysics
56
, no. 
6
(June
2013
):
2116
2122
.
47.
Zhao
Y.
,
Lin
B.
,
Liu
T.
,
Zheng
Y.
,
Kong
J.
,
Li
Q.
, and
Song
H.
, “
Mechanism of Multifield Coupling-Induced Outburst in Mining-Disturbed Coal Seam
,”
Fuel
272
(July
2020
): 117716, https://doi.org/10.1016/j.fuel.2020.117716
This content is only available via PDF.
You do not currently have access to this content.