Abstract

Adhesive joints have unique advantages when compared to conventional mechanical joints. Adhesives can undergo creep deformation at room temperature (cold flow) as well as at low stress (well below the yield point of the material), which can lead to considerable reduction in the life expectancy of the bonded structures. Therefore, performing creep tests to determine a material’s expected behavior under certain operational or environmental conditions is of crucial importance. Available commercial creep machines are often designed to test a wide variety of materials and, thus, present suboptimal features for testing specimens with specific characteristics, as is the case of adhesive joints. In this article, a new multi-station creep test machine is proposed and its main subsystems are described, namely the mechanical structure, the pneumatic servo-controlled actuation, the data acquisition, and the command software. The machine is able to run tests at a constant load that can be set from 100 up to 2,800 N, at intervals of 5 N, and a maximum displacement of 250 mm. The three stations can accommodate single lap joints or bulk specimens and allow for totally independent and simultaneous tests, at temperatures ranging from −100°C up to 200°C. The measurement resolution for load and displacement is 0.025 N and 0.025 mm, respectively. Experimental results of creep tests are presented, and the multi-station creep machine behavior is validated by comparison to a reference equipment. The creep machine reveals good performance, with force and displacement repeatability below close to 6 N and 0.25 mm, respectively.

References

1.
J. T.
 
Boyle
and
J.
 
Spence
,
Stress Analysis for Creep
(
London
:
Butterworths
,
2013
).
2.
R. M.
 
Guedes
,
Creep and Fatigue in Polymer Matrix Composites
(
Oxford, UK
:
Woodhead Publishing
,
2019
).
3.
R. K.
 
Penny
and
D. L.
 
Marriott
,
Design for Creep
(
Dordrecht, the Netherlands
:
Springer Science & Business Media
,
1995
).
4.
K.
 
Allen
and
M.
 
Shanahan
, “
The Creep Behaviour of Structural Adhesive Joints-I
,”
The Journal of Adhesion
7
, no. 
3
(February
1975
):
161
174
,
5.
K.
 
Allen
and
M.
 
Shanahan
, “
The Creep Behaviour of Structural Adhesive Joints II
,”
The Journal of Adhesion
8
, no. 
1
(January
1976
):
43
56
,
6.
R. M.
 
Carneiro Neto
,
A.
 
Akhavan‐Safar
,
E. M.
 
Sampaio
,
J. T.
 
Assis
, and
L. F.
 
da Silva
, “
Effect of Creep on the Mode II Residual Fracture Energy of Adhesives
,”
Journal of Applied Polymer Science
138
, no. 
47
(July
2021
):
51387
,
7.
L. F. M.
 
da Silva
,
A.
 
Öchsner
, and
R. D.
 
Adams
,
Handbook of Adhesion Technology
(
Berlin
:
Springer
,
2018
).
8.
R. M.
 
Paiva
,
C. A.
 
António
, and
L. F.
 
da Silva
, “
Optimal Design of Adhesive Composition in Footwear Industry Based on Creep Rate Minimization
,”
The International Journal of Advanced Manufacturing Technology
84
, no. 
9
(September
2015
):
2097
2111
,
9.
A.
 
Khabazaghdam
,
B.
 
Behjat
,
M.
 
Yazdani
,
L. F.
 
Da Silva
,
E.
 
Marques
, and
X.
 
Shang
, “
Creep Behaviour of a Graphene-Reinforced Epoxy Adhesively Bonded Joint: Experimental and Numerical Investigation
,”
The Journal of Adhesion
97
, no. 
13
(
2021
):
1189
1210
,
10.
E.
 
Marques
,
R.
 
Carbas
,
F.
 
Silva
,
L. F.
 
da Silva
,
D.
 
de Paiva
, and
F. D.
 
Magalhães
, “
Use of Master Curves Based on Time-Temperature Superposition to Predict Creep Failure of Aluminium-Glass Adhesive Joints
,”
International Journal of Adhesion and Adhesives
74
(April
2017
):
144
154
,
11.
E. N. D. C.
 
Andrade
, “
On the Viscous Flow in Metals, and Allied Phenomena
,”
Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character
84
, no. 
567
(June
1910
):
1
12
,
12.
N.
 
Koundinya
,
N.
 
Kumar
,
N.
 
Chawake
,
R.
 
Korla
, and
R. S.
 
Kottada
, “
A Simple and Versatile Machine for Creep Testing at Low Loads (6–300 N) and on Miniaturized Specimens: Application to a Mg-Base Alloy
,”
Review of Scientific Instruments
89
, no. 
10
(May
2018
):
105102
,
13.
F.
 
Garofalo
,
O.
 
Richmond
, and
W.
 
Domis
, “
Design of Apparatus for Constant-Stress or Constant-Load Creep Tests
,”
Journal of Basic Engineering
84
, no. 
2
(June
1962
):
287
293
,
14.
R.
 
Grishaber
,
R.
 
Lu
,
D.
 
Farkas
, and
A.
 
Mukherjee
, “
A Novel Computer Controlled Constant Stress Lever Arm Creep Testing Machine
,”
Review of Scientific Instruments
68
, no. 
7
(September
1998
):
2812
2817
,
15.
L.
 
Kloc
and
P.
 
Mareček
, “
Measurement of Very Low Creep Strains: A Review
,”
Journal of Testing and Evaluation
37
, no. 
1
(January
2009
):
53
58
,
16.
S.
 
Jorik
,
A.
 
Lion
, and
M.
 
Johlitz
, “
Design of the Novel Tensile Creep Experimental Setup, Characterisation and Description of the Long-Term Creep Performance of Polycarbonate
,”
Polymer Testing
75
(May
2019
):
151
158
,
17.
M. B.
 
Janeira
,
C. M.
 
da Silva
,
A. M.
 
Lopes
, and
L. F.
 
da Silva
, “
Thermal Chamber for Adhesives Creep Multi-Station Testing Machine
,”
U. Porto Journal of Engineering
6
, no. 
2
(November
2020
):
1
10
,
18.
G. N. F. F.
 
Bezerra
, “
Development of a Three-Station Machine for Adhesive Joints Testing
” (master's thesis,
University of Porto
,
2021
).
19.
S.
 
Sumathi
,
P.
 
Surekha
, and
P.
 
Surekha
,
LabVIEW Based Advanced Instrumentation Systems
(
Berlin
:
Springer
,
2007
).
20.
P. A.
 
Blume
,
The LabVIEW Style Book
(
Upper Saddle River, NJ
:
Pearson
,
2007
).
You do not currently have access to this content.