Abstract

Waste recovery systems are implemented around the world. These systems play a highly important role in the integrated waste management process. The constant technological evolution of this type of equipment aims to answer to global and European standards that increasingly require a reduction in the deposition of waste in landfills and a progressive growth of the recycling levels per capita. To allow the insertion of waste equipment in places where there are several limitations, such as the available space and the urban environment, buried equipment for the storage of waste appeared. This equipment has a large storage capacity, and because they are completely buried underground, only permanent deposition top bins are visible. This work was developed with the aim of improving buried underground waste disposal equipment, including the devices to comply with safety regulations and automated opening/closing mechanisms. The complete equipment can be divided into three parts: the liner, the buried structure, and the interface with the depositor of waste (through the deposition top bin). Because many of the available solutions are empirically based designs, there is a high margin to improve competitiveness, which reaches greater proportions in a scenario of economies of scale. The main equipment concept is presented, and structural analysis is accomplished by the finite element method, allowing for improved equipment to be proposed that replaces the current solution. Prototype fabrication/testing and cost analysis are also performed. A proposal to revise the current modular structure is finally presented, which allows for a cost and weight reduction of 6 % and 15 %, respectively.

References

1.
Bi
Z.
,
Finite Element Analysis Applications
(
Cambridge, MA
:
Academic Press
,
2018
).
2.
Okereke
M.
and
Keates
S.
,
Finite Element Applications: A Practical Guide to the FEM Process
(
Berlin
:
Springer
,
2018
).
3.
Budynas
R.
and
Nisbett
K.
,
Shigley’s Mechanical Engineering Design
(
New York
:
McGraw-Hill Education
,
2010
).
4.
Dieter
G. E.
and
Bacon
D. J.
,
Mechanical Metallurgy
(
New York
:
McGraw-Hill
,
1986
).
5.
Flom
Y.
, “
Strength and Margins of Brazed Joints
,” in
Advances in Brazing
, ed.
Sekulić
D. P.
(
Sawston, UK
:
Woodhead Publishing
,
2013
).
6.
Dowling
N. E.
,
Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue
(
London
:
Pearson
,
2012
).
7.
Eurocode—Basis of Structural Design
, EN 1990:2002+A1 (2010) (
Brussels, Belgium
:
Comité Européen de Normalisation
,
2010
).
8.
Haftka
R. T.
and
Gürdal
Z.
,
Elements of Structural Optimization
(
Berlin
:
Springer
,
2012
).
9.
Bergan
P.
and
Nygård
M.
, “
Finite Elements with Increased Freedom in Choosing Shape Functions
,”
International Journal for Numerical Methods in Engineering
20
, no. 
4
(April
1984
):
643
663
, https://doi.org/10.1002/nme.1620200405
10.
Schäfer
M.
,
Computational Engineering: Introduction to Numerical Methods
(
Berlin
:
Springer
,
2006
).
11.
Drucker
D. C.
and
Prager
W.
, “
Soil Mechanics and Plastic Analysis or Limit Design
,”
Quarterly of Applied Mathematics
10
, no. 
2
(
1952
):
157
165
, https://doi.org/10.1090/qam/48291
12.
Labuz
J. F.
and
Zang
A.
, “
Mohr–Coulomb Failure Criterion
,”
Rock Mechanics and Rock Engineering
45
, no. 
6
(July
2012
):
975
979
, https://doi.org/10.1007/s00603-012-0281-7
13.
de Souza Neto
E. A.
,
Perić
D.
, and
Owen
D. R. J.
,
Computational Methods for Plasticity, Theory and Applications
(
Hoboken, NJ
:
Wiley
,
2008
).
14.
Sobolev
A. V.
and
Radchenko
M. V.
, “
Use of Johnson–Cook Plasticity Model for Numerical Simulations of the SNF Shipping Cask Drop Tests
,”
Nuclear Engineering Technology
2
, no. 
4
(December
2016
):
272
276
, https://doi.org/10.1016/j.nucet.2016.11.014
15.
Johnson
G. R.
and
Cook
W. H.
, “
Fracture Characteristics of Three Metals Subjected to Various Strains, Strain Rates, Temperatures and Pressures
,”
Engineering Fracture Mechanics
21
, no. 
1
(January
1985
):
31
48
, https://doi.org/10.1016/0013-7944(85)90052-9
16.
Park
K.
and
Paulino
G. H.
, “
Cohesive Zone Models: A Critical Review of Traction-Separation Relationships across Fracture Surfaces
,”
Applied Mechanics Review
64
, no. 
6
(February
2013
): 060802, https://doi.org/10.1115/1.4023110
17.
Moës
N.
,
Dolbow
J.
, and
Belytschko
T.
, “
A Finite Element Method for Crack Growth without Remeshing
,”
International Journal for Numerical Methods in Engineering
46
, no. 
1
(July
1999
):
131
150
, https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
18.
Aisa
J.
,
Javierre
C.
, and
De la Serna
J. A.
, “
An Example of Simulation Tools Use for Large Injection Moulds Design: The CONTENUR™ 2400 l Solid Waste Container
,”
Journal of Materials Processing Technology
175
, no. 
1
(June
2006
):
15
19
, https://doi.org/10.1016/j.jmatprotec.2005.04.006
19.
Laranjeira
L.
, “
Desenvolvimento de um Sistema de Recolha de Residuos Sólidos Urbanos
” (in Portuguese) (masters thesis,
the University of Porto
,
2008
).
20.
Guimarães
J. D. O.
, “
Comando de Movimento de Plataforma Elevatória com Sincronização de Cilindros Hidráulicos
” (in Portuguese) (masters thesis,
the University of Porto
,
2015
).
21.
APA
Persu 2020
(
Zambujal, Portugal
:
Agência Portuguesa do Ambiente
,
2019
).
22.
Teixeira
S.
,
Monteiro
E.
,
Silva
V.
, and
Rouboa
A.
, “
Prospective Application of Municipal Solid Wastes for Energy Production in Portugal
,”
Energy Policy
71
(August
2014
):
159
168
, https://doi.org/10.1016/j.enpol.2014.04.002
23.
ERSAR
Caraterização do Setor de Àguas e Resíduos
(in Portuguese) (
Lisboa, Portugal
:
Entidade Reguladora dos Serviços de Águas e Resíduos
,
2016
).
24.
Simões
R. A. D.
,
Manual de Dimensionamento de Estruturas Metálicas
(in Portuguese) (
Coimbra, Portugal
:
Associação Portuguesa de Construções Metálicas e Mistas
,
2005
).
25.
Rodrigues
S. S. M.
, “
Classificação e Benchmarking de Sistemas de Recolha de Resíduos Urbanos
” (in Portuguese) (PhD thesis,
Nova University Lisbon
,
2017
).
26.
Stationary Waste Containers Up to 5 000 l, Top Lifted and Bottom Emptied—Part 1: General Requirements
, EN 13071-1(2019) (
Brussels, Belgium
:
Comité Européen de Normalisation
,
2019
).
27.
Ashby
M. F.
,
Materials Selection in Mechanical Design
(
Oxford, UK
:
Butterworth-Heinemann
,
2016
).
28.
Chang
K.-H.
,
Design Theory and Methods Using CAD/CAE: The Computer Aided Engineering Design Series
(
Cambridge, MA
:
Academic Press
,
2014
).
29.
Santos
P. M. M.
,
Campilho
R. D. S. G.
, and
Silva
F. J. G.
, “
A New Concept of Full-Automated Equipment for the Manufacture of Shirt Collars and Cuffs
,”
Robotics and Computer-Integrated Manufacturing
67
(February
2021
): 102023, https://doi.org/10.1016/j.rcim.2020.102023
30.
Faria
N.
,
Campilho
R.
,
Silva
F.
, and
Ferreira
L.
, “
Concept and Design of Automated Moving Device for Healthcare Equipment
,”
FME Transactions
49
, no. 
3
(
2021
):
598
607
, https://doi.org/10.5937/fme2103598F
31.
Ataei
H.
and
Mamaghani
M.
,
Finite Element Analysis: Applications and Solved Problems Using Fig Abaqus®
(
Scotts Valley, CA
:
CreateSpace
,
2018
).
This content is only available via PDF.
You do not currently have access to this content.