Abstract

Polymer-modified asphalt has been widely used in the road engineering field because of its excellent physical and chemical properties compared to virgin asphalt. To investigate the intrinsic interaction between polymer modifier and virgin asphalt, the molecular dynamics simulation was used to analyze different modified asphalt systems. Firstly, the models of the polymer-modified asphalts were constructed according to a four-component analysis, and then changes of the intrinsic interaction and compatibility between two components were detected using the related simulation parameters. The results confirmed that the physical blending and chemical reaction were crucial factors leading to molecular interaction between the modifier and virgin asphalt, which directly determined the microphase separation of the modified asphalt. Moreover, the interaction was also varying with types of modified asphalt, which showed consistency with the experiment phenomenon. Based on these analyses, the results of the current work were conducive to serve for the modified asphalt technology.

References

1.
He
L.
,
Li
G. N.
,
Zheng
Y. F.
,
Alexiadis
A.
,
Valentin
J.
, and
Kowalski
K. J.
, “
Research Progress and Prospect of Molecular Dynamics of Asphalt Systems
,”
Materials Reports
34
, no. 
19
(November
2020
):
19083
19093
, https://doi.org/10.11896/cldb.19070106
2.
Guo
M.
,
Tan
Y.
,
Wang
L.
, and
Hou
Y.
, “
Diffusion of Asphaltene, Resin, Aromatic and Saturate Components of Asphalt on Mineral Aggregates Surface: Molecular Dynamics Simulation
,”
Road Materials and Pavement Design
18
, no. 
S3
(May
2017
):
149
158
, https://doi.org/10.1080/14680629.2017.1329870
3.
Hu
D.
,
Pei
J.
,
Li
R.
,
Zhang
J.
,
Jia
Y.
, and
Fan
Z.
, “
Using Thermodynamic Parameters to Study Self-Healing and Interface Properties of Crumb Rubber Modified Asphalt Based on Molecular Dynamics Simulation
,”
Frontiers of Structural and Civil Engineering
14
, no. 
1
(December
2019
):
109
122
, https://doi.org/10.1007/s11709-019-0579-6
4.
Xu
G.
and
Wang
H.
, “
Diffusion and Interaction Mechanism of Rejuvenating Agent with Virgin and Recycled Asphalt Binder: A Molecular Dynamics Study
,”
Molecular Simulation
44
, no. 
17
(September
2018
):
1433
1443
, https://doi.org/10.1080/08927022.2018.1515483
5.
Su
M.
,
Si
C.
,
Zhang
Z.
, and
Zhang
H.
, “
Molecular Dynamics Study on Influence of Nano-ZnO/SBS on Physical Properties and Molecular Structure of Asphalt Binder
,”
Fuel
263
(March
2020
): 116777, https://doi.org/10.1016/j.fuel.2019.116777
6.
Xu
G.
and
Wang
H.
, “
Molecular Dynamics Study of Oxidative Aging Effect on Asphalt Binder Properties
,”
Fuel
188
(January
2017
):
1
10
, https://doi.org/10.1016/j.fuel.2016.10.021
7.
Xu
M.
,
Yi
J.
,
Qi
P.
,
Wang
H.
,
Marasteanu
M.
, and
Feng
D.
, “
Improved Chemical System for Molecular Simulations of Asphalt
,”
Energy & Fuels
33
, no. 
4
(March
2019
):
3187
3198
, https://doi.org/10.1021/acs.energyfuels.9b00489
8.
Pan
J.
and
Tarefder
R. A.
, “
Investigation of Asphalt Aging Behaviour Due to Oxidation Using Molecular Dynamics Simulation
,”
Molecular Simulation
42
, no. 
8
(
2016
):
667
678
, https://doi.org/10.1080/08927022.2015.1073851
9.
Xu
G.
and
Wang
H.
, “
Study of Cohesion and Adhesion Properties of Asphalt Concrete with Molecular Dynamics Simulation
,”
Computational Materials Science
112
, Part A (February
2016
):
161
169
, https://doi.org/10.1016/j.commatsci.2015.10.024
10.
Xu
G.
and
Wang
H.
, “
Molecular Dynamics Study of Interfacial Mechanical Behavior between Asphalt Binder and Mineral Aggregate
,”
Construction and Building Materials
121
(September
2016
):
246
254
, https://doi.org/10.1016/j.conbuildmat.2016.05.167
11.
Huang
M.
,
Zhang
H.
, and
Gao
Y.
, “
Study of Diffusion Characteristics of Asphalt-Aggregate Interface with Molecular Dynamics Simulation
,”
International Journal of Pavement Engineering
22
, no. 
3
(April
2019
):
319
330
, https://doi.org/10.1080/10298436.2019.1608991
12.
Mullins
O. C.
,
Sabbah
H.
,
Eyssautier
J.
,
Pomerantz
A. E.
,
Barré
L.
,
Andrews
A. B.
,
Ruiz-Morales
Y.
, et al., “
Advances in Asphaltene Science and the Yen–Mullins Model
,”
Energy & Fuels
26
, no. 
7
(April
2012
):
3986
4003
, https://doi.org/10.1021/ef300185p
13.
Ding
Y. J.
,
Tang
B. M.
,
Zhang
Y.
,
Wei
J.
, and
Cao
X. J.
, “
Molecular Dynamics Simulation to Investigate the Influence of SBS on Molecular Agglomeration Behavior of Asphalt
,”
Journal of Materials in Civil Engineering
27
, no. 
8
(August
2015
): C4014004, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000998
14.
Li
D. D.
and
Greenfield
M. L.
, “
Chemical Compositions of Improved Model Asphalt Systems for Molecular Simulations
,”
Fuel
115
(January
2014
):
347
356
, https://doi.org/10.1016/j.fuel.2013.07.012
15.
Yang
X. Z.
,
Molecular Simulation and Polymer Materials
(
Beijing
:
Science Press
,
2002
).
16.
Bandyopadhyay
A.
, “
Molecular Modeling of EPON 862-DETDA Polymer
” (PhD diss.,
Michigan Technological University
,
2012
).
17.
Zhang
D.
,
Production and Application of Petroleum Asphalt
(
Beijing
:
Petroleum Industry Press
,
2001
).
18.
Vamegh
M.
,
Ameri
M.
, and
Naeni
S. F. C.
, “
Experimental Investigation of Effect of PP/SBR Polymer Blends on the Moisture Resistance and Rutting Performance of Asphalt Mixtures
,”
Construction and Building Materials
253
(August
2020
): 119197, https://doi.org/10.1016/j.conbuildmat.2020.119197
19.
Xu
L.
,
Li
X.
,
Zong
Q.
, and
Xiao
F.
, “
Chemical, Morphological and Rheological Investigations of SBR/SBS Modified Asphalt Emulsions with Waterborne Acrylate and Polyurethane
,”
Construction and Building Materials
272
(February
2021
): 121972, https://doi.org/10.1016/j.conbuildmat.2020.121972
20.
Ahmedzade
P.
, “
The Investigation and Comparison Effects of SBS and SBS with New Reactive Terpolymer on the Rheological Properties of Bitumen
,”
Construction and Building Materials
38
(January
2013
):
285
291
, https://doi.org/10.1016/j.conbuildmat.2012.07.090
21.
Su
M.
,
Zhang
H.
,
Zhang
Y.
, and
Zhang
Z.
, “
Miscibility and Mechanical Properties of SBS and Asphalt Blends Based on Molecular Dynamics Simulation
,”
Journal of Chang’An University (Natural Science Edition)
37
, no. 
3
(May
2017
):
24
32
, https://doi.org/10.19721/j.cnki.1671-8879.2017.03.004
22.
Zhang
L.
, “
Physical and Mechanical Properties of Model Asphalt Systems Calculated Using Molecular Simulation
” (PhD diss.,
University of Rhode Island
,
2007
).
23.
Artok
L.
,
Su
Y.
,
Hirose
Y.
,
Hosokawa
M.
,
Murata
S.
, and
Nomura
M.
, “
Structure and Reactivity of Petroleum-Derived Asphaltene
,”
Energy & Fuels
13
, no. 
2
(February
1999
):
287
296
, https://doi.org/10.1021/ef980216a
24.
Groenzin
H.
and
Mullins
O. C.
, “
Molecular Size and Structure of Asphaltenes from Various Sources
,”
Energy & Fuels
14
, no. 
3
(March
2000
):
677
684
, https://doi.org/10.1021/ef990225z
25.
Li
D. D.
and
Greenfield
M. L.
, “
High Internal Energies of Proposed Asphaltene Structures
,”
Energy & Fuels
25
, no. 
8
(June
2011
):
3698
3705
, https://doi.org/10.1021/ef200507c
26.
Luo
X.
,
Xie
S.
,
Liu
J.
,
Hu
H.
,
Jiang
J.
,
Huang
W.
,
Gao
H.
,
Zhou
D.
,
Z.
, and
Yan
D.
, “
The Relationship between the Degree of Branching and Glass Transition Temperature of Branched Polyethylene: Experiment and Simulation
,”
Polymer Chemistry
5
, no. 
4
(October
2013
):
1305
1312
, https://doi.org/10.1039/C3PY00896G
27.
Sun
W.
and
Wang
H.
, “
Molecular Dynamics Simulation of Diffusion Coefficients between Different Types of Rejuvenator and Aged Asphalt Binder
,”
International Journal of Pavement Engineering
21
, no. 
8
(August
2019
):
966
976
, https://doi.org/10.1080/10298436.2019.1650927
28.
Tang
B.-M.
,
Ding
Y.-J.
,
Zhu
H.-Z.
, and
Cao
X.-J.
, “
Study on Agglomeration Variation Pattern of Asphalt Molecules
,”
China Journal of Highway and Transport
26
, no. 
3
(
2013
):
50
76
, https://doi.org/http://zgglxb.chd.edu.cn/EN/Y2013/V26/I3/50
29.
Tang
B. M.
,
Ding
Y. J.
,
Su
Y.
,
Cao
X. J.
,
Deng
M.
, and
Shan
B. L.
, “
Viscosity Prediction of Asphalt Molecular Model Based on Free Volume Theory
,”
Science Bulletin
65
, no. 
30
(April
2020
):
3308
3317
, https://doi.org/10.1360/TB-2020-0130
30.
Zhang
L.
and
Greenfield
M. L.
, “
Analyzing Properties of Model Asphalts Using Molecular Simulation
,”
Energy & Fuels
21
, no. 
3
(April
2007
):
1712
1716
, https://doi.org/10.1021/ef060658j
31.
Zhang
L.
and
Greenfield
M. L.
, “
Effects of Polymer Modification on Properties and Microstructure of Model Asphalt Systems
,”
Energy & Fuels
22
, no. 
5
(July
2008
):
3363
3375
, https://doi.org/10.1021/ef700699p
32.
Guo
M.
,
Huang
Y.
,
Wang
L.
,
Yu
J.
, and
Hou
Y.
, “
Using Atomic Force Microscopy and Molecular Dynamics Simulation to Investigate the Asphalt Micro Properties
,”
International Journal of Pavement Research and Technology
11
, no. 
4
(July
2018
):
321
326
, https://doi.org/10.1016/j.ijprt.2017.09.017
33.
Guo
M.
,
Liang
M.
,
Fu
Y.
,
Sreeram
A.
, and
Bhasin
A.
, “
Average Molecular Structure Models of Unaged Asphalt Binder Fractions
,”
Materials and Structures
54
, no. 
4
(August
2021
): 173, https://doi.org/10.1617/s11527-021-01754-2
34.
Ren
W.
,
Chen
H.
,
Yang
C.
, and
Shan
H.
, “
Molecular Size Characterization of Heavy Oil Fractions in Vacuum and Solution by Molecular Dynamic Simulation
,”
Frontiers of Chemical Engineering in China
4
, no. 
3
(September
2010
):
250
256
, https://doi.org/10.1007/s11705-009-0281-7
This content is only available via PDF.
You do not currently have access to this content.