Abstract

The Superpave Performance Grading (PG) framework or a variation of this framework is often used as a purchase specification in the United States and as a tool to evaluate the expected performance of modified and unmodified asphalt binders in many countries around the world. A cornerstone of the PG framework is the low-temperature grade of the asphalt binder that is assessed using a bending beam rheometer (BBR) using maximum stiffness and a minimum rate of deformation as criteria. Several previous studies from other researchers have demonstrated the feasibility of using the dynamic shear rheometer (DSR) with a 4-mm parallel plate geometry to measure the rheological properties of asphalt binders at low temperatures. This article builds on these studies to evaluate the feasibility of using a DSR to replace the use of a BBR for low-temperature grading of the asphalt binder using two different approaches. The first approach was to measure complex shear modulus of different asphalt binders using the DSR, convert these measurements to BBR equivalent stiffness and m-value using principles of linear viscoelasticity, and compare the two pairs of parameters from each method. The second approach was to use the complex shear modulus and phase angle measured using the DSR in lieu of using the stiffness and m-value measured using the BBR. Although the results from both methods show feasibility of using the 4-mm plate with the DSR to estimate low-temperature properties, the second approach of measuring and using the DSR-based complex shear moduli and phase angle is a more viable alternative for routine use.

References

1.
Pink
H. S.
,
Merz
R. E.
, and
Bosniack
D. S.
, “
Asphalt Rheology: Experimental Determination of Dynamic Moduli at Low Temperature
,”
Association of Asphalt Paving Technologists Proceedings
49
(
1980
):
62
94
.
2.
Bahia
H. U.
,
Anderson
D. A.
, and
Christensen
D. W.
, “
The Bending Beam Rheometer; A Simple Device for Measuring Low-Temperature Rheology of Asphalt Binders (with Discussion)
,”
Journal of the Association of Asphalt Paving Technologists
61
(
1992
):
117
153
.
3.
Filonzi
A.
,
Lee
S. K.
,
Ferreira
W.
,
Hajj
R.
, and
Bhasin
A.
, “
A Micro-extraction Method for Use with 4 mm Plate Geometry in the Dynamic Shear Rheometer to Evaluate Asphalt Binder Rheology
,”
Construction and Building Materials
252
(August
2020
): 119024, https://doi.org/10.1016/j.conbuildmat.2020.119024
4.
Standard Method for the Quantitative Extraction and Recovery of Asphalt Binder from Asphalt Mixtures
, AASHTO TP2 (
Washington, DC
:
American Association of State Highway and Transportation Officials
,
1999
).
5.
Carret
J. C.
,
Falchetto
A. C.
,
Marasteanu
M. O.
,
Di Benedetto
H.
,
Wistuba
M. P.
, and
Sauzeat
C.
, “
Comparison of Rheological Parameters of Asphalt Binders Obtained from Bending Beam Rheometer and Dynamic Shear Rheometer at Low Temperatures
,”
Road Materials and Pavement Design
16
(April
2015
):
211
227
, https://doi.org/10.1080/14680629.2015.1029696
6.
Zeng
Z. A.
,
Underwood
B. S.
, and
Castorena
C.
, “
Low-Temperature Performance Grade Characterisation of Asphalt Binder Using the Dynamic Shear Rheometer
,”
International Journal of Pavement Engineering
23
, no. 
3
(
2022
):
811
823
, https://doi.org/10.1080/10298436.2020.1774766
7.
Sui
C.
,
Farrar
M. J.
,
Tuminello
W. H.
, and
Turner
T. F.
, “
New Technique for Measuring Low-Temperature Properties of Asphalt Binders with Small Amounts of Material
,”
Transportation Research Record
2179
, no. 
1
(
2010
)
23
28
.
8.
Sui
C.
,
Farrar
M. J.
,
Harnsberger
P. M.
,
Tuminello
W. H.
, and
Turner
T. F.
, “
New Low-Temperature Performance-Grading Method: Using 4-mm Parallel Plates on a Dynamic Shear Rheometer
,”
Transportation Research Record
2207
, no. 
1
(
2011
):
43
48
.
9.
Farrar
M. J.
,
Sui
C.
,
Salmans
S.
, and
Qin
Q.
,
Determining the Low-Temperature Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR), Technical Report
(
Laramie, WY
:
Western Research Institute
,
2015
).
10.
Lu
X.
,
Uhlback
P.
, and
Soenen
H.
, “
Investigation of Bitumen Low Temperature Properties Using a Dynamic Shear Rheometer with 4 mm Parallel Plates
,”
International Journal of Pavement Research and Technology
10
, no. 
1
(January
2017
):
15
22
, https://doi.org/10.1016/j.ijprt.2016.08.010
11.
Laukkanen
O.-V.
, “
Small-Diameter Parallel Plate Rheometry: A Simple Technique for Measuring Rheological Properties of Glass-Forming Liquids in Shear
,”
Rheologica Acta
56
, no. 
7
(June
2017
):
661
671
, https://doi.org/10.1007/s00397-017-1020-5
12.
Oshone
M. T.
, “
Performance Based Evaluation of Cracking in Asphalt Concrete Using Viscoelastic and Fracture Properties
” (PhD diss.,
University of New Hampshire,
2018
).
13.
Hajj
R.
,
Filonzi
A.
,
Rahman
S.
, and
Bhasin
A.
, “
Considerations for Using the 4 mm Plate Geometry in the Dynamic Shear Rheometer for Low Temperature Evaluation of Asphalt Binders
,”
Transportation Research Record
2673
, no. 
11
(June
2019
):
649
659
, https://doi.org/10.1177/0361198119855332
14.
Büchner
J.
,
Wistuba
M. P.
,
Remmler
T.
, and
Wang
D.
, “
On Low Temperature Binder Testing Using DSR 4 mm Geometry
,”
Materials and Structures
52
, no. 
6
(November
2019
):
1
11
, https://doi.org/10.1617/s11527-019-1412-3
15.
Gražulytė
J.
,
Soenen
H.
,
Blom
J.
,
Vaitkus
A.
,
Židanavičiūtė
J.
, and
Margaritis
A.
, “
Analysis of 4-mm DSR Tests: Calibration, Sample Preparation, and Evaluation of Repeatability and Reproducibility
,”
Road Materials and Pavement Design
22
, no. 
3
(July
2019
):
557
571
, https://doi.org/10.1080/14680629.2019.1634636
16.
Büchner
J.
,
Wistuba
M. P.
,
Dasek
O.
,
Staschkiewicz
M.
,
Soenen
H.
,
Zofka
A.
, and
Remmler
T.
, “
Interlaboratory Study on Low Temperature Asphalt Binder Testing Using Dynamic Shear Rheometer with 4 mm Diameter Parallel Plate Geometry
,”
Road Materials and Pavement Design
23
, no. 
4
(
2022
):
890
906
, https://doi.org/10.1080/14680629.2020.1851291
17.
Sun
Y.
,
Huang
B.
,
Chen
J.
,
Jia
X.
, and
Ding
Y.
, “
Characterizing Rheological Behavior of Asphalt Binder over a Complete Range of Pavement Service Loading Frequency and Temperature
,”
Construction and Building Materials
123
(
2016
):
661
672
.
18.
Standard Method of Test for Effect of Heat and Air on a Moving Film of Asphalt (Rolling Thin-film Oven Test)
, AASHTO T240 (
Washington, DC
:
American Association of State Highway and Transportation Officials
,
2013
).
19.
Standard Practice for Accelerated Aging of Asphalt Binder Using a Pressurized Aging Vessel (PAV)
, AASHTO R28 (
Washington, DC
:
American Association of State Highway and Transportation Officials
,
2012
).
20.
Standard Test Method for Determining the Flexural Creep Stiffness of Asphalt Binder Using the Bending Beam Rheometer (BBR)
, AASHTO T313 (
Washington, DC
:
American Association of State Highway and Transportation Officials
,
2019
).
21.
Emri
I.
,
Von Bernstorff
B.
,
Cvelbar
R.
, and
Nikonov
A.
, “
Re-examination of the Approximate Methods for Interconversion between Frequency-and Time-Dependent Material Functions
,”
Journal of Non-Newtonian Fluid Mechanics
129
, no. 
2
(August
2005
):
75
84
, https://doi.org/10.1016/j.jnnfm.2005.05.008
22.
Schwarzl
F.
and
Struik
L.
, “
Analysis of Relaxation Measurements
,”
Advances in Molecular Relaxation Processes
1
, no. 
3
(December
1968
):
201
255
, https://doi.org/10.1016/0001-8716(68)80001-X
23.
Tschoegl
N. W.
, “
Representation of Linear Viscoelastic Behavior by Mathematical Models
,” in
The Phenomenological Theory of Linear Viscoelastic Behavior
(
Berlin, Germany
:
Springer
,
1989
),
314
364
.
24.
Ninomiya
K.
and
Ferry
J. D.
, “
Some Approximate Equations Useful in the Phenomenological Treatment of Linear Viscoelastic Data
,”
Journal of Colloid Science
14
, no. 
1
(
1959
):
36
48
.
25.
Park
S.
and
Kim
Y.
, “
Interconversion between Relaxation Modulus and Creep Compliance for Viscoelastic Solids
,”
Journal of Materials in Civil Engineering
11
, no. 
1
(
1999
):
76
82
.
26.
Olard
F.
and
Di Benedetto
H.
, “
General ‘2s2p1d’ Model and Relation between the Linear Viscoelastic Behaviours of Bituminous Binders and Mixes
,”
Road Materials and Pavement Design
4
, no. 
2
(
2003
):
185
224
. https://doi.org/10.1080/14680629.2003.9689946
27.
Falchetto
A. C.
,
Marasteanu
M. O.
, and
Di Benedetto
H.
, “
Analogical Based Approach to Forward and Inverse Problems for Asphalt Materials Characterization at Low Temperatures
,” in
Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions
80
(
2011
):
549
580
.
This content is only available via PDF.
You do not currently have access to this content.