ABSTRACT

Regular pavement condition evaluation is the key to ensuring a good asset management of in-service pavements, because it allows anticipating and optimizing maintenance or rehabilitation works. In particular, interface bonding conditions between asphalt concrete layers are of major concern because in most cases, structural problems come from interface defects, and furthermore, they have a huge impact on the pavement current mechanical behavior and its remaining service life. Usual structural nondestructive testing devices do not allow assessing this parameter on their own. This is the reason why there is a need for an in situ measurement system. The French Civil Aviation Technical Center (STAC) launched an ambitious research and development program with the objective of developing a proof-of-concept for such a device and associated data analysis methodology, which enables characterization of the interface response for several mechanical solicitations, including rolling-wheel passage or heavy weight deflectometer dynamic impulse load, with a two-fold purpose: a better understanding for research purposes of the interface’s mechanical behavior and its evolution during the life of the pavement and to have at their disposal an operational tool to evaluate the interface bonding condition of in-service pavements. This paper presents the measurement device developed by the STAC. It is inspired by the ovalization system invented in the 1970s by the Laboratoires des Ponts et Chaussées, which consists of measuring the diameter variation of a core-hole in three horizontal directions (longitudinal, transverse, and 45°) during the passage of a rolling-wheel. The first part of the paper focuses on the device development process that led to the final prototype. The second part is dedicated to the 3-D finite element modeling developed for data analysis. The results from a field survey, performed on the STAC’s test facility, are finally presented and compared with numerical simulations.

References

1.
J.-M.
 
Roussel
,
H.
 
Di Benedetto
,
C.
 
Sauzéat
, and
M.
 
Broutin
, “
Spectral Element Simulation of Heavy Weight Deflectometer Test Including Layer Interface Conditions and Linear Viscoelastic Behavior of Bituminous Materials
,” in
Accelerated Pavement Testing to Transport Infrastructure Innovation
, ed.
A.
 
Chabot
,
P.
 
Hornych
,
J.
 
Harvey
, and
L. G.
 
Loria-Salazar
(
Cham, Switzerland
:
Springer Nature Switzerland AG
,
2020
),
658
665
, https://doi.org/10.1007/978-3-030-55236-7_68
2.
G.
 
White
, “
Cyclic Shear Deformation of Asphalt at Melbourne Airport
” (paper presentation, FAA Worldwide Airport Technology Transfer Conference,
Galloway, NJ
, August 5–7,
2014
).
3.
C. J.
 
Bognacki
,
A.
 
Frisvold
, and
T.
 
Bennert
, “
Investigation of Asphalt Pavement Slippage Failures on Runway 4R-22L Newark International Airport
” (paper presentation, FAA Worldwide Airport Technology Transfer Conference,
Atlantic City, NJ
, April 16–18,
2007
).
4.
A.
 
Sadoun
,
M.
 
Broutin
, and
J.-M.
 
Simonin
, “
Assessment of HWD Ability to Detect Debonding of Pavement Layer Interfaces
,” in
Eighth RILEM International Conference on Mechanisms of Cracking and Debonding in Pavements
, ed.
A.
 
Chabot
,
W. G.
 
Buttlar
,
E. V.
 
Dave
,
C.
 
Petit
, and
G.
 
Tebaldi
(
Dordrecht, the Netherlands
:
Springer
,
2016
),
763
769
, https://doi.org/10.1007/978-94-024-0867-6_106
5.
M.
 
Broutin
,
S.
 
Fauchet
, and
D.
 
Mounier
, “
A Full-Scale Instrumented Test-Facility for Airport Pavement Modeling Improvements
,” in
Airfield and Highway Pavement 2013: Sustainable and Efficient Pavements
, ed.
I. L.
 
Al-Qadi
and
S.
 
Murrell
(
Reston, VA
:
American Society of Civil Engineers
,
2013
),
1396
1408
, https://doi.org/10.1061/9780784413005.118
6.
M.
 
Broutin
and
A.
 
Duprey
, “
Towards Improved Temperature Correction for NDT Data Analyses
,” in
Airfield and Highway Pavements 2017: Design, Construction, Evaluation, and Management of Pavements
, ed.
I. L.
 
Al-Quadi
,
H.
 
Ozer
,
E. M.
 
Vélez-Vega
, and
S.
 
Murrell
(
Reston, VA
:
American Society of Civil Engineers
,
2017
),
244
255
, https://doi.org/10.1061/9780784480922.022
7.
C.
 
Petit
,
A.
 
Chabot
,
A.
 
Destrée
, and
C.
 
Raab
, “
Recommendation of RILEM TC 241-MCD on Interface Debonding Testing in Pavements
,”
Materials and Structures
51
, no.
4
(July
2018
):
96
,
8.
C.
 
Petit
,
A.
 
Chabot
,
A.
 
Destrée
, and
C.
 
Raab
, “
Interface Debonding Behavior
,” in
Mechanisms of Cracking and Debonding
, ed.
W. G.
 
Buttlar
,
A.
 
Chabot
,
E. V.
 
Dave
,
C.
 
Petit
and
G.
 
Tebaldi
(
Cham, Switzerland
:
Springer
,
2018
),
103
153
, https://doi.org/10.1007/978-3-319-76849-6_3
9.
G. N.
 
Savin
,
Stress Concentration Around Holes
, 1st ed. (
New York
:
Pergamon Press
,
1961
).
10.
R.
 
Kobisch
and
C.
 
Peyronne
, “
L’ovalisation: une nouvelle methode de mesure des deformations elastiques des chaussees
,”
Bull Liaison Lab Ponts Chauss
102
(July–August
1979
):
59
71
.
11.
M.
 
Gharbi
,
M.
 
Broutin
,
I.
 
Boulkhemair
,
M. L.
 
Nguyen
, and
A.
 
Chabot
, “
Analysis of Ovalization Measurements on Flexible Airport Pavement under HWD Dynamic Impulse Load
,” in
Proceedings of the RILEM International Symposium on Bituminous Materials – ISBM2020
, ed.
H.
 
Di Benedetto
,
H.
 
Baaj
,
E.
 
Chailleux
, et al. (
Cham, Switzerland
:
Springer
,
2021
),
263
269
, https://doi.org/10.1007/978-3-030-46455-4_33
12.
O.
 
Ruiz
and
G.
 
Voisin
, “
L’essai d’ovalisation
,” RGRA
962
(May
2019
), https://www.editions-rgra.com/revue/962/auscultation/lessai-dovalisation
13.
H.
 
Goacolou
,
P.
 
Keryell
,
R.
 
Kobisch
, and
J.
 
Poilane
, “
Utilisation de l’ovalisation en Auscultation des Chaussées
,”
Bull Liaison Lab Ponts Chauss
128
(November–December
1983
):
65
75
.
14.
J.-M.
 
Martin
,
J.-P.
 
Benaben
,
M.
 
Jouaville
,
P.
 
Lepert
,
J.-P.
 
Poilane
,
C.
 
Rapaud
, and
A.
 
Simon
, “
Ovalisation, exécution et exploitation des mesures
,”
Techniques et méthodes des laboratoires des Ponts et Chaussées - méthode d’essai LPC
41
(
1995
), https://www.ifsttar.fr/fileadmin/user_upload/editions/lcpc/MethodeDEssai/MethodeDEssai-LCPC-ME41.pdf
15.
M.
 
Gharbi
,
M.
 
Broutin
,
T.
 
Schneider
,
S.
 
Maindroult
, and
A.
 
Chabot
, “
Towards an Adapted Ovalization System for Flexible Airfield Pavement Interface Characterization Using Rolling-Wheel or HWD Loads
,” in
Accelerated Pavement Testing to Transport Infrastructure Innovation
, ed.
A.
 
Chabot
,
P.
 
Hornych
,
J.
 
Harvey
, and
L. G.
 
Loria-Salazar
(
Cham, Switzerland
:
Springer
,
2020
),
516
525
, https://doi.org/10.1007/978-3-030-55236-7_53
16.
M.
 
Broutin
,
A.
 
Sadoun
, and
A.
 
Duprey
, “
Comparison between HWD Backcalculated Subgrade Dynamic Moduli and In Situ Static Bearing Capacity Tests
,” in
Airfield and Highway Pavements 2019: Design, Construction, Condition Evaluation, and Management of Pavements
, ed.
I.
 
Al-Qadi
,
H.
 
Ozer
,
A.
 
Loizos
, and
S.
 
Murrell
(
Reston, VA
:
American Society of Civil Engineers
,
2019
),
404
413
, https://doi.org/10.1061/9780784482452.040
17.
M.
 
Broutin
and
D.
 
Mounier
, “
Release of the French Technical Guidance for Flexible Airfield Pavement Assessment Using HWD
,” in
Airfield and Highway Pavements Pavement 2015: Innovative and Cost-Effective Pavements for a Sustainable Future
, ed.
J.
 
Harvey
and
K. F.
 
Chou
(
Reston, VA
:
American Society of Civil Engineers
,
2015
),
330
341
, https://doi.org/10.1061/9780784479216.030
18.
M.
 
Broutin
, “
Assessment of Flexible Airfield Pavements Using Heavy Weight Deflectometers. Development of a FEM Dynamical Time-Domain Analysis for the Backcalculation of Structural Properties
” (PhD diss.,
Ecole Nationale des Ponts et Chaussées
,
2010
).
You do not currently have access to this content.