Abstract

The effect of iron slag powder (ISP) obtained from the local steel industry as an effective addition to improve the radiation shielding ability of cement paste was evaluated. Ten cement pastes with different ISP-to-cement ratios, up to 90 % by mass of cement, were prepared. In addition, the compressive strength of the cement paste as a function of slag content was investigated. The γ-ray attenuation measurements were performed by a NaI (Tl) detector at 59.54, 511, 662, 1,173.2 and 1,332.5 keV. The computation of γ-ray attenuation parameters was obtained by the WinXCom program. Both measured and calculated shielding results are in good agreement. The results demonstrate that the addition of slag significantly alters the cement paste density, γ-ray attenuation coefficient, effective atomic number (Zeff), effective electron density (Neff), and kerma coefficients (k). Moreover, the neutron shielding of cement paste has been evaluated in terms of the macroscopic removal cross section of the fast neutron (ΣR). In conclusion, it is argued that the incorporation of slag results in a significant improvement in γ-ray shielding ability. In addition, the results showed that the best ISP addition proportion that leads to the best shielding properties is about 60 % (by mass of cement).

References

1.
Kaplan
M. F.
,
Concrete Radiation Shielding
(
New York, NY
:
John Wiley & Sons
,
1989
).
2.
Kharita
M. H.
,
Takeyeddin
M.
,
Alnassar
M.
, and
Yousef
S.
, “
Development of Special Radiation Shielding Concretes Using Natural Local Materials and Evaluation of Their Shielding Characteristics
,”
Progress in Nuclear Energy
50
, no. 
1
(
2008
):
33
36
, https://doi.org/10.1016/j.pnucene.2007.10.004
3.
Jaeger
R. G.
,
Blizard
E. P.
,
Chilton
A. B.
,
Grotenhuis
M.
,
Hönig
A.
,
Jaeger
T. A.
, and
Eisenlohr
H. H.
, eds.,
Engineering Compendium on Radiation Shielding
(New York, NY: Springer-Verlag,
1975
).
4.
Carvalho
S. Z.
,
Vernilli
F.
,
Almeida
B.
,
Demarco
M.
, and
Silva
S. N.
, “
The Recycling Effect of BOF Slag in the Portland Cement Properties
,”
Resources, Conservation and Recycling
127
(
2017
):
216
220
, https://doi.org/10.1016/j.resconrec.2017.08.021
5.
Sikora
P.
,
Abd Elrahman
M.
,
Horszczaruk
E.
,
Brzozowski
P.
, and
Stephan
D.
, “
Incorporation of Magnetite Powder as a Cement Additive for Improving Thermal Resistance and Gamma-Ray Shielding Properties of Cement-Based Composites
,”
Construction and Building Materials
204
(
2019
):
113
121
, https://doi.org/10.1016/j.conbuildmat.2019.01.161
6.
Rashad
A. M.
, “
An Overview on Rheology, Mechanical Properties and Durability of High-Volume Slag Used as a Cement Replacement in Paste, Mortar and Concrete
,”
Construction and Building Materials
187
(
2018
):
89
117
, https://doi.org/10.1016/j.conbuildmat.2018.07.150
7.
Mo
K. H.
,
Alengaram
U. Johnson
, and
Jumaat
M. Z.
, “
Utilization of Ground Granulated Blast Furnace Slag as Partial Cement Replacement in Lightweight Oil Palm Shell Concrete
,”
Materials and Structure
48
(
2015
):
2545
2556
, https://doi.org/10.1617/s11527-014-0336-1
8.
Korde
C.
,
Cruickshank
M.
,
West
R. P.
, and
Pellegrino
C.
, “
Activated Slag as Partial Replacement of Cement Mortars: Effect of Temperature and a Novel Admixture
,”
Construction and Building Materials
216
(
2019
):
506
524
, https://doi.org/10.1016/j.conbuildmat.2019.04.172
9.
Pomaro
B.
,
Gramegna
F.
,
Cherubini
R.
,
De Nadal
V.
,
Salomoni
V.
, and
Faleschini
F.
, “
Gamma-Ray Shielding Properties of Heavyweight Concrete with Electric Arc Furnace Slag as Aggregate: An Experimental and Numerical Study
,”
Construction and Building Materials
200
(August
2019
):
188
197
, https://doi.org/10.1016/j.conbuildmat.2018.12.098
10.
Ozturk
M.
,
Akgol
O.
,
Sevim
U. K.
,
Karaaslan
M.
,
Demirci
M.
, and
Unal
E.
, “
Experimental Work on Mechanical, Electromagnetic and Microwave Shielding Effectiveness Properties of Mortar Containing Electric Arc Furnace Slag
,”
Construction and Building Materials
165
(March
2018
):
58
63
, https://doi.org/10.1016/j.conbuildmat.2018.01.031
11.
Dong
M.
,
Xue
X.
,
Yang
H.
,
Liu
D.
,
Wang
C.
, and
Li
Z.
, “
A Novel Comprehensive Utilization of Vanadium Slag: As Gamma Ray Shielding Material
,”
Journal of Hazardous Materials
318
(November
2016
):
751
757
, https://doi.org/10.1016/j.jhazmat.2016.06.012
12.
Florez
R.
,
Colorado
H. A.
,
Alajo
A.
, and
Giraldo
C. H. C.
, “
The Material Characterization and Gamma Attenuation Properties of Portland Cement-Fe3O4 Composites for Potential Dry Cask Applications
,”
Progress in Nuclear Energy
111
(March
2019
):
65
73
, https://doi.org/10.1016/j.pnucene.2018.10.022
13.
Alwaeli
M.
, “
Application of Granulated Lead–Zinc Slag in Concrete as an Opportunity to Save Natural Resources
,”
Radiation Physics and Chemistry
83
(February
2013
):
54
60
, https://doi.org/10.1016/j.radphyschem.2012.09.024
14.
Saca
N.
,
Radu
L.
,
Fugaru
V.
,
Gheorghe
M.
, and
Petre
I.
, “
Composite Materials with Primary Lead Slag Content: Application in Gamma Radiation Shielding and Waste Encapsulation Fields
,”
Journal of Cleaner Production
179
(April
2018
):
255
265
, https://doi.org/10.1016/j.jclepro.2018.01.045
15.
Ouda
A. S.
and
Abdel-Gawwad
H. A.
, “
The Effect of Replacing Sand by Iron Slag on Physical, Mechanical and Radiological Properties of Cement Mortar
,”
HBRC Journal
13
, no. 
3
(
2017
):
255
261
, https://doi.org/10.1016/j.hbrcj.2015.06.005
16.
Baltas
H.
,
Sirina
M.
,
Celik
A.
,
Ustabas
İ.
, and
El-Khayatt
A. M.
, “
Radiation Shielding Properties of Mortars with Minerals and Ores Additives
,”
Cement and Concrete Composites
97
(March
2019
):
268
278
, https://doi.org/10.1016/j.cemconcomp.2019.01.006
17.
Narloch
D. C.
,
Paschuk
S. A.
,
Corrêa
J. N.
,
Rocha
Z.
,
Mazer
W.
,
Torres
C. A. M. P.
,
Del Claro
F.
,
Denyak
V.
, and
Schelin
H. R.
, “
Characterization of Radionuclides Present in Portland Cement, Gypsum Phosphogypsum Mortars
,”
Radiation Physics and Chemistry
155
(February
2019
):
315
318
, https://doi.org/10.1016/j.radphyschem.2018.07.011
18.
Panzeri
L.
,
Caroselli
M.
,
Galli
A.
,
Lugli
S.
,
Martini
M.
, and
Sibili
E.
, “
Mortar OSL and Brick TL Dating: The Case Study of the UNESCO World Heritage Site of Modena
,”
Quaternary Geochronology
49
(February
2019
):
236
241
, https://doi.org/10.1016/j.quageo.2018.03.005
19.
Gerward
L.
,
Guilbert
N.
,
Jensen
K. Bjørn
, and
Levring
H.
, “
X-Ray Absorption in Matter. Reengineering XCOM
,”
Radiation Physics and Chemistry
60
, nos. 
1–2
(January
2001
):
23
24
, https://doi.org/10.1016/S0969-806X(00)00324-8
20.
El-Khayatt
A. M.
, “
NXcom–A Program for Calculating Attenuation Coefficients of Fast Neutrons and Gamma-Rays
,”
Annals of Nuclear Energy
38
, no. 
1
(January
2011
):
128
132
, https://doi.org/10.1016/j.anucene.2010.08.003
21.
Khan
F. M.
and
Gibbons
J. P.
,
Khan’s The Physics of Radiation Therapy
, 5th ed. (
Philadelphia, PA
:
Lippincott Williams and Wilkins
,
2014
).
22.
Hine
G. E.
, “
Secondary Electron Emission and Effective Atomic Numbers
,”
Nucleonics
10
, no. 
1
(
1952
).
23.
Tsai
C. M.
and
Cho
Z. H.
, “
Physics of Contrast Mechanism and Averaging Effect of Linear Attenuation Coefficients in a Computerized Transverse Axial Tomography (CTAT) Transmission Scanner
,”
Physics in Medicine & Biology
21
, no. 
4
(
1976
):
544
559
, https://doi.org/10.1088/0031-9155/21/4/006
24.
Sellakumar
P.
,
Samuel
E. J. J.
, and
Supe
S. S.
, “
Water Equivalence of Polymer Gel Dosimeters
,”
Radiation Physics and Chemistry
76
, no. 
7
(July
2007
):
1108
1115
, https://doi.org/10.1016/j.radphyschem.2007.03.003
25.
Puumalainen
P.
,
Olkkonen
H.
, and
Sikanen
P.
, “
Assessment of Fat Content of Liver by a Photon Scattering Technique
,”
The International Journal of Applied Radiation and Isotopes
28
, no. 
9
(September
1977
):
785
787
, https://doi.org/10.1016/0020-708X(77)90110-7
26.
Manninen
S.
and
Koikkalainen
S.
, “
Determination of the Effective Atomic Number Using Elastic and Inelastic Scattering of γ-Rays
,”
The International Journal of Applied Radiation and Isotopes
35
, no. 
10
(October
1984
):
965
968
, https://doi.org/10.1016/0020-708X(84)90212-6
27.
Murty
R. C.
, “
Effective Atomic Numbers of Heterogeneous Materials
,”
Nature
207
(
1965
):
398
399
, https://doi.org/10.1038/207398a0
28.
Manohara
S. R.
,
Hanagodimath
S. M.
,
Thind
K. S.
, and
Gerward
L.
, “
The Effective Atomic Number Revisited in the Light of Modern Photon-Interaction Cross-Section Databases
,”
Applied Radiation and Isotopes
68
, nos. 
4–5
(April–May
2010
):
784
787
, https://doi.org/10.1016/j.apradiso.2009.09.047
29.
Hubbell
J. H.
and
Seltzer
S. M.
, “
Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 keV to 20 meV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest
,” National Institute of Standards and Technology,
1995
, http://web.archive.org/web/20200223211305/https://nvlpubs.nist.gov/nistpubs/Legacy/IR/nistir5632.pdf
30.
Zhang
L.
and
Abdou
M. A.
, “
Kerma Factor Evaluation and Its Application in Nuclear Heating Experiment Analysis
,”
Fusion Engineering and Design
36
, no. 
4
(July
1997
):
479
503
, https://doi.org/10.1016/S0920-3796(96)00704-1
31.
El-Khayatt
A. M.
, “
Semi-Empirical Determination of Gamma-Ray Kerma Coefficients for Materials of Shielding and Dosimetry from Mass Attenuation Coefficients
,”
Progress in Nuclear Energy
98
(July
2017
):
277
284
, https://doi.org/10.1016/j.pnucene.2017.04.006
32.
Abdel-Rahman
W.
and
Podgorsak
E. B.
, “
Energy Transfer and Energy Absorption in Photon Interactions with Matter Revisited: A Step-by-Step Illustrated Approach
,”
Radiation Physics and Chemistry
79
, no. 
5
(May
2010
):
552
566
, https://doi.org/10.1016/j.radphyschem.2010.01.007
33.
Blizard
E. P.
and
Abbott
L. S.
, eds.,
Reactor Handbook, Vol. 3, Part 1, Shielding
(
New York, NY
:
Interscience Publishers
,
1960
).
This content is only available via PDF.
You do not currently have access to this content.