Abstract

The shear moduli of cylindrical metal specimens were determined by performing resonant column tests in a torsional mode of vibration. The tests were performed on four different metals, namely (i) aluminum, (ii) brass, (iii) copper, and (iv) mild steel. Keeping the length (L) of the specimens the same, different diameters (d) were chosen to vary the torsional stiffness and, thereby, the resonant frequency. Additional circular plates were attached to the top of the drive mechanism to have different resonant frequencies with the same torsional stiffness (KT). The shear moduli (G) were established by two different methods, namely (i) from the evaluation of KT and (ii) by first determining the mass moment of inertia (Jd) of the drive mechanism and then finding G from the measured circular resonant frequency (ωn). Both the methods provide exactly the same answer(s). For aluminum and brass, the measurement of the shear modulus was found to be much more accurate; the maximum variation of the shear modulus with diameter (8–12 mm/15 mm) for the same driving input voltage (torque) was around 3.3 % for aluminum and 1.2 % for brass. On the other hand, in the case of mild steel and copper, the variation of shear modulus was around 9.2 % and 7.2 %, respectively. The measured values of the shear moduli were found to compare well with the data reported from literature for the different chosen metals.

References

1.
Richart
,
F. E.
, Jr.
,
Hall
,
J. R.
, Jr.
, and
Woods
,
R. D.
,
Vibrations of Soils and Foundations
,
Prentice Hall
,
Upper Saddle River, NJ
,
1970
, 414p.
2.
Hardin
,
B. O.
and
Drnevich
,
V. P.
, “
Shear Modulus and Damping in Soils: Design Equations and Curves
,”
J. Soil Mech. Found. Div.
, Vol. 
98
, No. 
sm7
,
1972
, pp. 
667
692
.
3.
Drnevich
,
V. P.
,
Hardin
,
B. O.
, and
Shippy
,
D. J.
, “
Modulus and Damping of Soils by the Resonant-Column Method
,”
Dynamic Geotechnical Testing, ASTM STP654
,
Silver
M. L.
and
Tiedemann
D.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1978
, pp. 
91
125
, https://doi.org/10.1520/STP35673S
4.
ASTM D4015-07
Standard Test Methods for Modulus and Damping of Soils by Resonant-Column Method
(Superseded),
ASTM International
,
West Conshohocken, PA
, www.astm.org
5.
Chong
,
S.-H.
and
Kim
,
J.-Y.
, “
Nonlinear Vibration Analysis of the Resonant Column Test of Granular Materials
,”
J. Sound Vib.
, Vol. 
393
,
2017
, pp. 
216
228
, https://doi.org/10.1016/j.jsv.2016.12.018
6.
Cascante
,
G.
,
Santamarina
,
C.
, and
Yassir
,
N.
, “
Flexural Excitation in a Standard Torsional-Resonant Column Device
,”
Can. Geotech. J.
, Vol. 
35
, No. 
3
,
1998
, pp. 
478
490
, https://doi.org/10.1139/t98-012
7.
Kumar
,
J.
and
Madhusudhan
,
B. N.
, “
On Determining the Elastic Modulus of a Cylindrical Specimen Subjected to Flexural Excitation in a Resonant Column Apparatus
,”
Can. Geotech. J.
, Vol. 
47
, No. 
11
,
2010
, pp. 
1288
1298
, https://doi.org/10.1139/T10-027
8.
Timoshenko
,
S.
,
Vibration Problems in Engineering
, 2nd ed.,
D. Van Nostrand Company
,
New York, NY
,
1937
, pp. 
88
89
.
9.
Penny
,
J. E.
and
Reed
,
J. R.
, “
An Integral Equation Approach to the Fundamental Frequency of Vibrating Beams
,”
J. Sound Vib.
, Vol. 
19
, No. 
4
,
1971
, pp. 
393
400
, https://doi.org/10.1016/0022-460X(71)90610-9
10.
Billy
,
M. D.
, “
A New Simple Method for Measuring the Velocities of Sound in Isotropic, Nondispersive Solids
,”
J. Phys. D: Appl. Phys.
, Vol. 
13
, No. 
5
,
1980
, pp. 
767
771
, https://doi.org/10.1088/0022-3727/13/5/010
11.
Kumar
,
A.
,
Jayakumar
,
T.
,
Raj
,
B.
, and
Ray
,
K. K.
, “
Correlation between Ultrasonic Shear Wave Velocity and Poisson’s Ratio for Isotropic Solid Materials
,”
Acta Mater.
, Vol. 
51
, No. 
8
,
2003
, pp. 
2417
2426
, https://doi.org/10.1016/S1359-6454(03)00054-5
12.
Gere
,
J.
and
Goodno
,
B.
,
Mechanics of Materials
, 7th ed.,
Cengage Learning
,
Boston, MA
,
2008
, 1022p.
13.
Kumar
,
J.
and
Clayton
,
C. R. I.
, “
Effect of Specimen Torsional Stiffness on Resonant Column Test Results
,”
Can. Geotech. J.
, Vol. 
44
, No. 
2
,
2007
, pp. 
221
230
, https://doi.org/10.1139/t06-099
14.
Clayton
,
C. R. I.
,
Priest
,
J. A.
,
Bui
,
M.
,
Zervos
,
A.
, and
Kim
,
S. G.
, “
The Stokoe Resonant Column Apparatus: Effects of Stiffness, Mass and Specimen Fixity
,”
Géotechnique
, Vol. 
59
, No. 
5
,
2009
, pp. 
429
437
, https://doi.org/10.1680/geot.2007.00096
This content is only available via PDF.
You do not currently have access to this content.