Abstract

The assessment of the structural integrity of nuclear vessels is based on a series of procedures developed in the 1970s and 1980s. On one hand, curves that, according to the American Society of Mechanical Engineers code, describe the relationship between steel toughness and temperature in the ductile-to-brittle transition region, based on the reference temperature concept RTNDT, were adopted in 1972. On the other hand, the material embrittlement derived from the exposure of steel to neutron irradiation is determined through the model included in “Regulatory Guide 1.99 Rev. 2,” published in 1988. Since then, there have been enormous advances in this field. For example, the Master Curve, based on the reference temperature T0, describes the relationship between toughness and temperature in the transition zone more realistically and with much more robust microstructural and mechanical foundations and uses the elastic-plastic fracture toughness KJc. Moreover, improved models have been developed to estimate the embrittlement of steel subjected to neutron irradiation, such as ASTM E900, Standard Guide for Predicting Radiation-Induced Transition Temperature Shift in Reactor Vessel Materials. This study is aimed at comparing the results obtained using traditional procedures to the improved alternatives developed later. For this purpose, the behavior of the steel of a nuclear vessel that is currently under construction has been experimentally characterized through RTNDT and T0 parameters. In addition, the material embrittlement has been quantified using “Regulatory Guide 1.99 Rev. 2” and ASTM E900. These experimental results have been transferred to the assessment of the structural integrity of the vessel to determine the pressure-temperature limit curves and size of the maximum admissible defect as a function of the operation time of the plant. The results have allowed the implicit overconservatism present in the traditional procedures to be quantified.

References

1.
American Society of Mechanical Engineers “
BPVC Section III-Rules for Construction of Nuclear Facility Components
,”
Boiler and Pressure Vessel Code
,
American Society of Mechanical Engineers
,
New York, NY
,
2017
, pp. 
1
501
.
2.
American Society of Mechanical Engineers “
BPVC Section XI-Rules for Inservice Inspection of Nuclear Power Plant Components
,”
Boiler and Pressure Vessel Code
,
American Society of Mechanical Engineers
,
New York, NY
,
2017
, pp. 
1
731
.
3.
ASTM E1921-17a
Standard Test Method for Determination of Reference Temperature, T0, for Ferritic Steels in the Transition Range
(Superseded),
ASTM International
,
West Conshohocken, PA
,
2017
, www.astm.org
4.
Hadley
,
I.
, “
Overview of the European Fitnet Fitness-for-Service Procedure (June 2008)
,” TWI Ltd., Cambridge, UK, http://web.archive.org/web/20181217145443/https://www.twi-global.com/technical-knowledge/published-papers/overview-of-the-european-fitnet-fitness-for-service-procedure-june-2008 (accessed 17 Dec. 2018).
5.
United States Nuclear Regulatory Commission “
50.61 Fracture Toughness Requirements for Protection against Pressurized Thermal Shock Events
,”
NRC Regulations Title 10, Code of Federal Regulations
,
United States Nuclear Regulatory Commission
,
Washington, DC
,
2011
, https://web.archive.org/web/20181213165008/https://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050-0061.html (accessed 13 Dec. 2018).
6.
Wallin
,
K.
,
Saario
,
T.
, and
Törrönen
,
K.
, “
Statistical Model for Carbide Induced Brittle Fracture in Steel
,”
Met. Sci.
, Vol. 
18
, No. 
1
,
1984
, pp. 
13
16
, https://doi.org/10.1179/030634584790420384
7.
Wallin
,
K.
, “
The Scatter in KIC-Results
,”
Eng. Fract Mech
, Vol. 
19
, No. 
6
,
1984
, pp. 
1085
1093
, https://doi.org/10.1016/0013-7944(84)90153-X
8.
Wallin
,
K.
, “
The Size Effect in KIC Results
,”
Eng Fract Mech
, Vol. 
22
, No. 
1
,
1985
, pp. 
149
163
, https://doi.org/10.1016/0013-7944(85)90167-5
9.
Wallin
,
K.
, “
A Simple Theoretical Charpy V - KIc Correlation for Irradiation Embrittlement
,”
Innovative Approaches to Irradiation Damage and Fracture Analysis
,
American Society of Mechanical Engineers
,
New York, NY
,
1989
, pp. 
93
100
.
10.
Merkle
,
J. G.
,
Wallin
,
K.
, and
McCabe
,
D. E.
,
Technical Basis for an ASTM Standard on Determining the Reference Temperature, T0, for Ferritic Steels in the Transition Range
,
United States Nuclear Regulatory Commission
,
Washington, DC
,
1998
, pp. 
1
149
.
11.
Ferreño
,
D.
,
Lacalle
,
R.
,
Cicero
,
R.
,
Scibetta
,
M.
,
Gorrochategui
,
I.
,
van Walle
,
E.
, and
Gutiérrez-Solana
,
F.
, “
Structural Integrity Assessment of a Nuclear Vessel with FITNET FFS and Master Curve Approach
,”
Eng Fail Anal
, Vol. 
17
, No. 
1
,
2010
, pp. 
259
269
, https://doi.org/10.1016/j.engfailanal.2009.06.007
12.
Ferreño
,
D.
,
Scibetta
,
M.
,
Gorrochategui
,
I.
,
Lacalle
,
R.
,
van Walle
,
E.
, and
Gutiérrez-Solana
,
F.
, “
Validation and Application of the Master Curve and Reconstitution Techniques to a Spanish Nuclear Vessel
,”
Eng Fract Mech
, Vol. 
76
, No. 
16
,
2009
, pp. 
2495
2511
, https://doi.org/10.1016/j.engfracmech.2009.08.010
13.
Ferreño
,
D.
,
Lacalle
,
R.
,
Gorrochategui
,
I.
, and
Gutiérrez-Solana
,
F.
, “
Fracture Characterisation of a Nuclear Vessel Steel under Dynamic Conditions in the Transition Region
,”
Eng Fail Anal
, Vol. 
17
, No. 
2
,
2010
, pp. 
464
472
, https://doi.org/10.1016/j.engfailanal.2009.09.001
14.
Ferreño
,
D.
,
Lacalle
,
R.
,
Gorrochategui
,
I.
, and
Gutiérrez-Solana
,
F.
, “
Analysis of Dynamic Conditions during Thermal Transient Events for the Structural Assessment of a Nuclear Vessel
,”
Eng Fail Anal
, Vol. 
17
, No. 
4
,
2010
, pp. 
894
905
, https://doi.org/10.1016/j.engfailanal.2009.10.024
15.
Scibetta
,
M.
,
Ferreño
,
D.
,
Gorrochategui
,
I.
,
Lacalle
,
R.
,
van Walle
,
E.
,
Martín
,
J.
, and
Gutiérrez-Solana
,
F.
, “
Characterisation of the Fracture Properties in the Ductile to Brittle Transition Region of the Weld Material of a Reactor Pressure Vessel
,”
J Nucl Mater
, Vol. 
411
, No. 
1
,
2011
, pp. 
25
40
, https://doi.org/10.1016/j.jnucmat.2011.01.024
16.
Heerens
,
J.
and
Hellmann
,
D.
, “
Application of the Master Curve Method and the Engineering Lower Bound Toughness Method to Laser Welded Steel
,”
J Test Eval
, Vol. 
31
, No. 
3
,
2003
, pp. 
215
221
, https://doi.org/10.1520/JTE12419J
17.
ASTM E399-12e3
Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials
(Superseded),
ASTM International
,
West Conshohocken, PA
,
2012
, www.astm.org
18.
ASTM E1820-17
Standard Test Method for Measurement of Fracture Toughness
(Superseded),
ASTM International
,
West Conshohocken, PA
,
2017
, www.astm.org
19.
Wallin
,
K.
, “
Effect of Strain Rate on the Fracture Toughness Reference Temperature T0 for Ferritic Steels
,” presented at the
1997 TMS Annual Meeting
, Orlando, FL, Feb. 9–13,
1997
,
The Minerals, Metals & Materials Society
,
Pittsburgh, PA
, pp. 
171
182
.
20.
Joyce
,
J.
,
Tregoning
,
R.
, and
Roe
,
C.
, “
On Setting Testing Rate Limitations for the Master Curve Reference Temperature, To, of ASTM E 1921
,”
J Test Eval
, Vol. 
34
, No. 
2
,
2006
, pp. 
121
127
, https://doi.org/10.1520/JTE14108
21.
Hernández
,
R.
,
Romero
,
J.
,
Vázquez
,
S.
,
Santillán
,
M.
, and
Scibetta
,
M.
, “
Loading Rate Effect on the Master Curve Reference Temperature, T0, for the A533 B Material
,”
J Test Eval
, Vol. 
38
, No. 
2
,
2010
, pp. 
195
202
, https://doi.org/10.1520/JTE102438
22.
United States Nuclear Regulatory Commission “
Regulatory Guide 1.99: Radiation Embrittlement of Reactor Vessel Materials, Revision 2
,”
United States Nuclear Regulatory Commission
,
Washington, DC
,
1988
, pp. 
1
10
.
23.
ASTM E900-15e1
Standard Guide for Predicting Radiation-Induced Transition Temperature Shift in Reactor Vessel Materials
,
ASTM International
,
West Conshohocken, PA
,
2015
, www.astm.org
24.
Sokolov
,
M. A.
and
Nanstad
,
R. K.
, “
Comparison of Irradiation-Induced Shifts of KJc and Charpy Impact Toughness for Reactor Pressure Vessel Steels
,”
Effects of Radiation on Materials: 18th International Symposium, ASTM STP1325
,
Nanstad
R. K.
,
Hamilton
M. L.
,
Garner
F. A.
, and
Kumar
A. E.
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1999
, pp. 
167
190
, https://doi.org/10.1520/STP13863S
25.
American Society of Mechanical Engineers “
BPVC Section II-Materials-Part A-Ferrous Materials Specifications
,”
Boiler and Pressure Vessel Code 2017
,
American Society of Mechanical Engineers
,
New York, NY
,
2017
, pp. 
1
813
.
26.
ASTM E185-16
Standard Practice for Design of Surveillance Programs for Light-Water Moderated Nuclear Power Reactor Vessels
,
West Conshohocken, PA
,
ASTM International
,
2016
, www.astm.org
27.
ASTM E8/E8M-16a
Standard Test Methods for Tension Testing of Metallic Materials
,
ASTM International
,
West Conshohocken, PA
,
2016
, www.astm.org
28.
ASTM E23-16b
Standard Test Methods for Notched Bar Impact Testing of Metallic Materials
,
ASTM International
,
West Conshohocken, PA
,
2016
, www.astm.org
29.
ASTM E208-06(2012)
Standard Test Method for Conducting Drop-Weight Test to Determine Nil-Ductility Transition Temperature of Ferritic Steels
(Superseded),
ASTM International
,
West Conshohocken, PA
,
2012
, www.astm.org
This content is only available via PDF.
You do not currently have access to this content.