Abstract

The human body consists of various bones with different elemental compositions and densities. The mass attenuation coefficients (μm), effective atomic and electronic cross sections (σa and σe), effective atomic numbers and electron densities (Zeff and Neff), and computed tomography (CT) numbers of the human body’s various bones have been determined for the main gamma rays of 67gallium, 153samarium, 99mtechnetium, 201thallium, 131iodine radionuclides and gamma rays from positron annihilation. To calculate these parameters, MCNPX code, WinXCom, and XMuDat computer programs and also the Auto-Zeff software and interpolation method have been used. The results of the MCNPX code were in good agreement with the WinXCom and XMuDat programs with differences of ≤4.42 %. It was found that the σa, σe, Zeff, and CT number parameters decrease as photon energy increases and the density of bone samples decreases. The μm and Neff values decrease with the increase in photon energy based on the results. Furthermore, they are approximately independent of the bone sample density. Of all the bone types, the σa, σe, Zeff, and CT number values of cortical bone are the greatest ones, while those of spongiosa are the lowest. Observed good agreement reveals that the chosen Monte Carlo code and computer programs could be useful to calculate the photon interaction characteristics of different bone types.

References

1.
White
D. R.
,
Woodard
H. Q.
, and
Hammond
S. M.
, “
Average Soft-Tissue and Bone Models for Use in Radiation Dosimetry
,”
British Journal of Radiology
60
, no. 
717
(
1987
):
907
913
, https://doi.org/10.1259/0007-1285-60-717-907
2.
Woodard
H. Q.
and
White
D. R.
, “
Bone Models for Use in Radiotherapy Dosimetry
,”
British Journal of Radiology
55
, no. 
652
(
1982
):
277
282
, https://doi.org/10.1259/0007-1285-55-652-277
3.
Hubbell
J. H.
and
Seltzer
S. M.
,
Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 keV–20 MeV for Elements 1<Z<92 and 48 Additional Substances of Dosimetric Interest, NISTIR 5632
(
Gaithersburg, MD
:
National Institute of Standards and Physics Laboratory
,
1995
),
13
111
, https://doi.org/10.6028/NIST.IR.5632
4.
Tekin
H. O.
,
Singh
V. P.
,
Altunsoy
E. E.
,
Manici
T.
, and
Sayyed
M. I.
, “
Mass Attenuation Coefficients of Human Body Organs Using MCNPX Monte Carlo Code
,”
Iranian Journal of Medical Physics
14
, no. 
4
(December
2017
):
229
240
, https://doi.org/10.22038/ijmp.2017.23478.1230
5.
Shivaramu
, “
Effective Atomic Numbers for Photon Energy Absorption and Photon Attenuation of Tissues from Human Organs
,”
Medical Dosimetry
27
, no. 
1
(
2002
):
1
9
, https://doi.org/10.1016/S0958-3947(01)00078-4
6.
Manjunatha
H. C.
and
Rudraswamy
B.
, “
Photon Interaction Parameters of Dosimetric Interest in Bone
,”
Health Physics
103
, no. 
3
(September
2012
):
322
329
, https://doi.org/10.1097/HP.0b013e3182585a5b
7.
Medhat
M. E.
,
Shirmardi
S. P.
, and
Singh
V. P.
, “
Comparison of Geant 4, MCNP Simulation Codes of Studying Attenuation of Gamma Rays through Biological Materials with XCOM and Experimental Data
,”
Journal of Applied & Computational Mathematics
3
, no. 
179
(
2014
):
1
5
, https://doi.org/10.4172/2168-9679.1000179
8.
Singh
V. P.
,
Badiger
N. M.
, and
Kucuk
N.
, “
Assessment of Methods for Estimation of Effective Atomic Numbers of Common Human Organ and Tissue Substitutes: Waxes, Plastics and Polymers
,”
Radioprotection
49
, no. 
2
(
2014
):
115
121
, https://doi.org/10.1051/radiopro/2013090
9.
Ermis
E. E.
,
Pilicer
F. B.
,
Pilicer
E.
, and
Celiktas
C.
, “
A Comprehensive Study for Mass Attenuation Coefficients of Different Parts of the Human Body through Monte Carlo Methods
,”
Nuclear Science and Techniques
27
, no. 
54
(June
2016
):
1
9
, https://doi.org/10.1007/s41365-016-0053-2
10.
Taylor
M. L.
,
Smith
R. L.
,
Dossing
F.
, and
Franich
R. D.
, “
Robust Calculation of Effective Atomic Numbers: The Auto-Zeff Software
,”
Medical Physics
39
, no. 
4
(March
2012
):
1769
1778
, https://doi.org/10.1118/1.3689810
11.
Pelowitz
D. B.
,
MCNPXTM User’s Manual, Version 2.6.0, Report LA-CP-07-1473
(
Los Alamos, NM
:
Los Alamos National Laboratory
,
2008
).
12.
Gerward
L.
,
Guilbert
N.
,
Jensen
K. B.
, and
Levring
H.
, “
WinXCom–A Program for Calculating X-Ray Attenuation Coefficients
,”
Radiation Physics and Chemistry
71
, no. 
3
(October/November
2004
):
653
654
, https://doi.org/10.1016/j.radphyschem.2004.04.040
13.
Nowotny
R.
,
XMuDat: Photon Attenuation Data on PC, Tech. Rep. IAEA-NDS-195
(
Vienna
:
International Atomic Energy Agency
,
1998
).
14.
Boone
J. M.
and
Chavez
A. E.
, “
Comparison of X-Ray Cross Sections for Diagnostic and Therapeutic Medical Physics
,”
Medical Physics
23
, no. 
12
(December
1996
):
1997
2005
, https://doi.org/10.1118/1.597899
15.
Zhou
H.
,
Keall
P. J.
, and
Graves
E. E.
, “
A Bone Composition Model for Monte Carlo X-Ray Transport Simulations
,”
Medical Physics
36
, no. 
3
(February
2009
):
1008
1018
, https://doi.org/10.1118/1.3077129
16.
International Commission on Radiation Units and Measurements
Tissue Substitutes in Radiation Dosimetry and Measurement, ICRU Report 44
(
Bethesda, MD
:
International Commission on Radiation Units and Measurements
,
1989
).
17.
McConn
R. J.
,
Gesh
C. J.
,
Pagh
R. T.
,
Rucker
R. A.
, and
Williams
R. G.
,
Radiation Portal Monitor Project, Compendium of Material Composition Data for Radiation Transport Modeling, Revision 1
(
Richland, WA
:
Pacific Northwest National Laboratory
), 99352, https://doi.org/10.2172/1023125
18.
White
M. C.
,
Photoatomic Data Library MCPLIB04: A New Photoatomic Library Based on Data from ENDF/B-VI Release 8, internal memorandum X-5: MCW-02-111
(
Los Alamos, NM
:
Los Alamos National Laboratory
,
2002
).
19.
Cullen
D. E.
,
Hubbel
J. H.
, and
Kissel
L. D.
,
EPDL97: The Evaluated Photon Data Library, ‘97 Version, UCRL-50400, Vol 6, Rev 5
(
Livermore, CA
:
Lawrence Livermore National Laboratory
,
1997
).
20.
Everett
C. J.
and
Cashwell
E. D.
,
MCP Code Fluorescence Routine Discussion, Report LA-5240-MS
(
Los Alamos, NM
:
Los Alamos National Laboratory
,
1973
), https://doi.org/10.2172/4411256
21.
White
M. C.
,
Photoatomic Data Library MCPLIB03: An Update to MCPLIB02 Containing New Compton Doppler Broadening Data, Internal Memorandum X-5:MCW-02-110
(
Los Alamos, NM
:
Los Alamos National Laboratory
,
2002
).
22.
Sharifi
S.
,
Bagheri
R.
, and
Shirmardi
S. P.
, “
Comparison of Shielding Properties for Ordinary, Barite, Serpentine and Steel–Magnetite Concretes Using MCNP-4C Code and Available Experimental Results
,”
Annals of Nuclear Energy
53
(March
2013
):
529
534
, https://doi.org/10.1016/j.anucene.2012.09.015
23.
Bagheri
R.
,
Moghaddam
A. K.
, and
Yousefi
A.
, “
Gamma-Ray Shielding Study of Light to Heavyweight Concretes Using MCNP-4C Code
,”
Nuclear Science and Techniques
28
, no. 
15
(February
2017
):
1
8
, https://doi.org/10.1007/s41365-016-0167-6
24.
Bagheri
R.
,
Moghaddam
A. K.
, and
Yousefnia
H.
, “
Gamma Ray Shielding Study of Barium-Bismuth-Borosilicate Glasses as Transparent Shielding Materials Using MCNP-4C Code, XCOM Program, and Available Experimental Data
,”
Nuclear Engineering and Technology
49
, no. 
1
(February
2017
):
216
223
, https://doi.org/10.1016/j.net.2016.08.013
25.
Bagheri
R.
,
Moghaddam
A. K.
,
Shirmardi
S. P.
,
Azadbakht
B.
, and
Salehi
M.
, “
Determination of Gamma-Ray Shielding Properties for Silicate Glasses Containing Bi2O3, PbO, and BaO
,”
Journal of Non-Crystalline Solids
479
(January
2018
):
62
71
, https://doi.org/10.1016/j.jnoncrysol.2017.10.006
26.
Akman
F.
,
Sayyed
M. I.
,
Kaçal
M. R.
, and
Tekin
H. O.
, “
Investigation of Photon Shielding Performances of Some Selected Alloys by Experimental Data, Theoretical and MCNPX Code in the Energy Range of 81 keV-1333 keV
,”
Journal of Alloys and Compounds
772
(January
2019
):
516
524
, https://doi.org/10.1016/j.jallcom.2018.09.177
27.
Sayyed
M. I.
,
Tekin
H. O.
,
Kılıcoglu
O.
,
Agar
O.
, and
Zaid
M. H. M.
, “
Shielding Features of Concrete Types Containing Sepiolite Mineral: Comprehensive Study on Experimental, XCOM and MCNPX Results
,”
Results in Physics
11
(December
2018
):
40
45
, https://doi.org/10.1016/j.rinp.2018.08.029
28.
Kurudirek
M.
,
Özdemir
Y.
,
Şimşek
Ö.
, and
Durak
R.
, “
Comparison of Some Lead and Non-Lead Based Glass Systems, Standard Shielding Concretes and Commercial Window Glasses in Terms of Shielding Parameters in the Energy Region of 1 keV–100 GeV: A Comparative Study
,”
Journal of Nuclear Materials
407
, no. 
2
(December
2010
):
110
115
, https://doi.org/10.1016/j.jnucmat.2010.10.007
29.
Bagheri
R.
,
Shirmardi
S. P.
, and
Adeli
R.
, “
Study on Gamma-Ray Shielding Characteristics of Lead Oxide, Barite, and Boron Ores Using MCNP-4C Monte Carlo Code and Experimental Data
,”
Journal of Testing and Evaluation
45
, no. 
6
(November
2017
):
2259
2266
, https://doi.org/10.1520/JTE20160284
30.
Goldman
L. W.
, “
Principles of CT and CT Technology
,”
Journal of Nuclear Medicine Technology
35
, no. 
3
(September
2007
):
115
128
, https://doi.org/10.2967/jnmt.107.042978
This content is only available via PDF.
You do not currently have access to this content.